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EVALUATION OF THE PHYSIOLOGICAL EFFECTS OF REDUCED 

HYDROXOCOBALAMIN ON ACUTE CARBON MONOXIDE TOXICITY 

 
By: Alden H. Newcomb, B.S. 

 
A thesis submitted in partial fulfillment of the requirements for the degree of Master of 

Science at Virginia Commonwealth University 
 

Virginia Commonwealth University, 2014 
 

Major Advisor: Dr. Bruce Spiess, MD, FAHA 
Director, Virginia Commonwealth University Reanimation Shock Center 

Affiliate Professor, Department of Physiology & Biophysics 
 

Carbon monoxide (CO) poisoning represents a global health threat responsible for 

hundreds of thousands of hospital visits and tens of thousands of deaths annually. 

Oxygen therapy is the only current approved treatment for CO poisoning. Previous work 

published in the 1970’s and research conducted in the VCURES lab group has 

indicated that a reduced form of vitamin B12, hydroxocobalamin (B12r), can potentially 

serve as an antidote for CO poisoning by converting CO bound to hemoglobin to carbon 

dioxide (CO2) and mitigating the deleterious neurological effects of CO poisoning. For 

the first time in documented literature we successfully used a Clark-type polarographic 

oxygen-sensitive electrode to demonstrate CO-induced decreases in brain tissue 

oxygen tension in anesthetized rats. Additionally, we demonstrated that B12r is capable 

of rescuing this CO-induced hypoxia and hypotension within 15 minutes of 

intraperitoneal administration with no adverse effects on blood chemistry. 
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INTRODUCTION AND BACKGROUND 

 
1.1 Carbon Monoxide Poisoning – A Global Health Threat 
 
The toxic and fatal effects of carbon monoxide (CO) have been known for 

thousands of years; ancient Greeks and Romans used the gas for execution purposes. 

Known as “the silent killer” due to its lack of color, odor, or taste, CO forms from the 

incomplete combustion of hydrocarbons and other carbon-containing compounds.1 The 

Occupational Health and Safety Administration (OSHA) requires workplace atmospheric 

CO concentrations to be less than 0.0035%, or 35 parts per million (ppm), indicating 

how toxic CO truly is.2 Common sources of CO production include exhaust from internal 

combustion engines, improperly ventilated gas appliances, malfunctioning HVAC 

systems, and structure fires. Most recently, a faulty ventilation system in a New York 

restaurant led to a mass CO exposure that caused one death and hospitalized dozens 

of employees and restaurant patrons.3 In the United States alone between 2000 and 

2009, non-fire related CO exposures accounted for over 15,000 emergency department 

(ED) visits and over 500 deaths annually.4–6 The World Health Organization reported 

over 140,000 non-fire related CO deaths in European member states from 1980-2008.7 

When fire-related CO exposures are accounted for, these numbers increase drastically. 

Each year, a reported 310,000-670,000 persons are exposed to structure fire smoke 

and 20,000-23,000 die from smoke inhalation in the United States alone.8 Structure fire 

smoke can contain CO levels of greater than 70,000 parts per million (ppm) in an 

enclosed room.9 The actual number of annual carbon monoxide exposures and deaths 

is assumed to be much higher than the reported numbers because CO exposure 
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symptoms are often mistaken for benign pathologies like acute viral illnesses, acute 

anxiety, or clinical depression.10 Across the globe, carbon monoxide is thought to 

account for over 50% of deaths by poisoning.10,11  

Incidences of CO poisoning vary seasonally in temperate climates. Cold seasons 

are often associated with higher numbers of CO exposures due to improperly ventilated 

hydrocarbon-powered heating appliances.10 Natural disasters such as hurricanes, 

tornadoes, and snowstorms also bring about an increase in CO poisonings due to the 

use of generators and other fossil fuel-powered appliances indoors with poor ventilation. 

Between 1991 and 2009, there were 1888 reported cases of disaster-related CO 

exposure with 75 fatalities.12 In the two weeks following Hurricane Sandy in 2012, there 

were 437 CO exposures reported to 911 call centers in New York City alone due to 

indoor grilling and indoor use of gasoline generators.13 Gasoline powered generators 

are the most common culprit behind hurricane and tornado related CO exposures; 

vehicle exhaust is the most common cause of CO exposures related to snowstorms.14–

16 Countries in tropical climates, particularly developing countries, have reported CO 

exposures resulting from the use of indoor charcoal cooking devices.17 Gas geysers, a 

type of gas-powered water heater popular in India, have been linked to multiple deaths 

and CO poisonings. However, the true number of CO-related deaths and exposures in 

India is unknown due to improper reporting of suspected cases.18,19  

The abovementioned CO poisonings and deaths do not account for intentional 

exposures, that is, attempted and successful suicides. Intentional CO exposures 

account for over 15,000 ED visits annually and two thirds of all CO-related deaths in the 

United States.20 In New Zealand, over 60% of the reported 1,302 intentional poisoning 
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deaths between 1999 and 2008 were due to CO inhalation.21 Suicide by intentional CO 

inhalation is common across the globe, with vehicle exhaust and charcoal smoke as the 

two most common CO sources.22–34 Intentional vehicle exhaust exposures can take 

place both indoors and outdoors. Indoor exposures generally involve idling a vehicle in 

an enclosed space, often a garage, with the vehicle windows down and garage door 

shut. Outdoor exhaust inhalations require slightly more creative methods – a vacuum 

hose or similar tubing is run from the vehicle tailpipe into the passenger compartment of 

the automobile and exhaust fumes are allowed to accumulate within the cabin. Similar 

methods have been reported in the United States, across Europe, and Asia.29,30,32,34,35 

This method of intentional CO exposure has witnessed a decline over the past two 

decades as modern catalytic converters can effectively scrub up to 99% of CO from 

automobile exhaust.34   

Although the incidence of vehicle exhausted-related CO exposures has declined, 

the popularity of suicide by carbon monoxide has not. A simple Google search of 

“commit suicide by carbon monoxide” yields multiple websites that provide detailed 

instructions on how to do so.36,37 The most recent global trend in intentional CO 

exposures involves burning charcoal inside of a small room, often a bathroom, that has 

been sealed with duct tape.23 This method of suicide has gained popularity across the 

world, but most notably so in Asian countries. Indoor charcoal burning accounted for 

33.5% of all suicides in Taiwan in 2006.31,33 In Hong Kong, charcoal burning accounted 

for 24.1% of suicides between 2002 and 2004.38 A startling Internet trend known as a 

“suicide pact” has emerged in Japan and spread to China, in which strangers exchange 

online messages vowing to commit suicide together. The cause of death in over 90% of 
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these “internet suicides” in China and Japan was carbon monoxide poisoning due to 

indoor charcoal burning.28,39 

 

1.2 Carboxyhemoglobin  
 
 The central dogma of CO toxicity, herein referred to as the “hypoxic theory,” was 

first described by Douglas and Haldane in the turn of the 20th century.40,41 Their work 

has stood the test of time and is still taught in medical schools, nursing schools, and 

allied health programs across the world. Carbon monoxide is nonpolar and therefore 

lipophilic, diffusing rapidly across pulmonary epithelium when inhaled and binding tightly 

to the central iron atom in the heme moiety of heme-containing proteins such as 

hemoglobin (Hb), myoglobin, cytochromes, and NADH reductase.42 Binding of CO to Hb 

forms carboxyhemoglobin (COHb), which is incapable of binding and transporting 

oxygen (O2), thus causing a functional anemia by reducing the amount of 

oxyhemoglobin (O2Hb). Carboxyhemoglobin formation also alters the confirmation of 

hemoglobin, reducing its ability to release O2 to tissue. The increased oxygen affinity of 

Hb in CO poisoning is known as the “Haldane effect.”43 

This displacement of oxygen from hemoglobin and alteration of O2 release leads 

to a decrease in tissue O2 delivery causing hypoxic injury, especially to organs that are 

heavily oxygen dependent such as the brain and heart.  Due to the high affinity of CO 

for Hb, COHb exhibits a half-life (t1/2) of approximately 6 hours when an exposed patient 

is removed from the environment containing CO and allowed to breathe ambient air. 

Because of this long half-life, patients exposed to CO can potentially still suffer its 

harmful effects hours after exposure.44–46 This holds especially true in pregnant patients 
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due to the higher affinity of fetal Hb for both CO and O2. Thus, at equilibrium for a given 

partial pressure of dissolved CO in blood, fetal COHb levels (%COHB) will be higher 

than that of the mother and can continue to rise even while maternal %COHb drops.43 A 

representative schematic of this phenomenon is depicted in Figure 1. 

 
 
 
 
 
 
 

 
 
 

Figure 1 – Schematic of %COHb Changes in Maternal and Fetal Hb. Black 
broken lines indicate %COHb steady-state equilibrium. Colored broken lines 
represent immediate post-exposure treatment with normobaric O2. Colored dotted 
lines represent immediate treatment with hyperbaric O2. Adapted from “Rapid 
Elimination of CO from the Lungs: coming full circle 100 years on” by Fisher et al., 
2011, Experimental Physiology OA, 96:12, 1262-1269. Copyright 2011 by the 
authors. Adapted with permission. 
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 The amount of COHb formed during CO inhalation varies with the concentration 

of the inhaled gas, time exposed, cardiac output, respiratory rate, and tidal volume. 

COHb formation continues during exposure until a steady-state equilibrium %COHb is 

reached with the partial pressure of inhaled CO.40,41,46  

Mammals form CO endogenously during the breakdown of heme via heme 

oxygenase (HO) proteins. As such, humans will generally have a baseline %COHb from 

0-3%. Smokers and people in urban environments can exhibit %COHb of greater than 

10%.47 While it is generally accepted that high %COHb levels are associated with more 

severe exposures and poor clinical outcomes, there is interestingly no correlation 

between %COHb and prognosis.44,46,48–50 This phenomenon was first described by John 

Haldane’s son in 1927, who reported that CO mortality was not related to the formation 

of COHb.51 Patients presenting with a seemingly fatal %COHb can make complete 

recoveries, just as those presenting with mildly increased %COHb may die or suffer 

from lasting neurological and/or cardiac complications.44,46–48 The variances seen 

between initial %COHb and prognosis are evidence that there is much more to CO 

poisoning than COHb-dependent tissue hypoxia, and this is indeed true. A visual 

representation of COHb-mediated pathophysiology and additional mechanisms to be 

discussed in the proceeding sections is given in Figure 2.  
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Figure 2 – Overview of CO-Mediated Pathophysiology. Adapted from: “Carbon 
Monoxide Poisoning” by Guzman, J. Critical Care Clinics, 2012,  98:537-548. Copyright 
2012, Elsevier. Adapted with permission. 
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1.3 Effects of CO on the Vascular & Cardiopulmonary Systems 
 
1.3.1 CO & Vasculature 
  

Simple physics dictates that the formation of COHb requires a partial pressure of 

dissolved CO in the bloodstream in order to form and stabilize the COHb complex. This 

dissolved CO readily diffuses across endothelial membranes and into surrounding 

tissue. CO exhibits potent vasodilatory effects in vascular tissue similar to those of nitric 

oxide (NO) and hypotension is commonly seen in CO poisoned patients as a 

result.42,44,52 Much like NO, CO is also produced endogenously. Endogenous CO forms 

from the breakdown of heme via HO proteins that are expressed ubiquitously in the 

body.53,54 Once synthesized by HO, CO binds and activates soluble guanylyl cyclase 

(sGC), a heme-containing protein responsible for the conversion of guanosine 

triphosphate (GTP) to cyclic guanosine monophosphate (cGMP). Activation of sGC 

increases cGMP concentration in vascular smooth muscle cells, which decreases 

intracellular calcium (Ca2+) concentrations by blocking Ca2+ entry, blocks potassium 

(K+) entry into the cell (thereby hyperpolarizing the membrane potential), and stimulates 

myosin light chain phosphatase pathways resulting in smooth muscle relaxation and 

vasodilation.53–55 NO production is also increased during exposure to low concentrations 

(nanomolar levels) of CO. At low contentrations, CO binds to the heme moiety and 

activates nitric oxide synthase (NOS) , the enzyme responsible for NO production. This 

increase in NO production ceases at higher CO concentrations (mircomolar levels), at 

which point CO actually inhibits NOS activity.42 CO also causes release of NO from 
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platelets and triggers platelet-neutrophil aggregation causing neutrophil diapedesis into 

the endothelium and free radical-mediated endothelial injury.  

In addition to the NO-cGMP-dependent pathway described above, CO has also 

been shown to activate large-conductance calcium channels (BKCa). Although the 

exact mechanism of the interaction between BKCa and CO remains elusive, multiple 

studies have shown that activation of BKCa by CO results in a reduction of intracellular 

Ca2+ via closing of voltage dependent Ca2+ channels, resulting in membrane 

hyperpolarization and vasodilation.56,57 

 
1.3.2 CO-Induced Myocardial Damage  
 
 Myocardial damage is common following moderate to severe CO exposure and 

presents in approximately 35% of these patients.58 Chronic exposure to CO has been 

shown to cause myocardial fibrosis and stunning; severe acute exposure is more 

closely associated with lethal arrhythmias.52,58–60 Ventricular dysfunction and heart 

failure have also been reported following CO exposure. These patients demonstrated a 

strong negative correlation between left ventricular ejection fraction and %COHb (r=      

-0.660) and duration of CO exposure (r= -0.630).58 Satran et al. reported that over one 

in three patients hospitalized for CO exposure demonstrated elevated serum levels of 

troponin I (TnI) and creatine-kinase MB fraction (CKMB), which are sensitive and 

specific biological markers of cardiac injury.52,61 Fracasso and colleagues demonstrated 

increased expression of two known markers of acute myocardial injury, fibronectin and 

complement complex C5b-9, in the right ventricles of 26 out of 26 CO fatality victims.61 

The toxicity exerted on cardiac tissue by CO is twofold and additive; decreased 

O2 delivery causes a hypoxia/ischemia injury and a toxic injury forms from the direct 
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cytotoxic effects of CO on cellular metabolism. This unique injury pattern is outlined in 

Figure 2. CO-induced vasodilation causes a compensatory increase in heart rate, 

cardiac output (Q), and contractility that has been well documented since the mid-19th 

century.42,62 Coronary blood flow increases as well during CO exposure.59 Interestingly, 

subendocardial blood flow only displays a marginal increase during CO exposure. This 

indicates the possibility of subendocardial hypoperfusion playing a role in the cardiac 

pathology of CO poisoning.63 Hypoxic stress from the formation of COHb is further 

exacerbated by the increase in myocardial oxygen demand caused by the associated 

changes in contractility and Q and can result in eventual cardiac failure. This CO-

induced cardiac hypoxia/ischemia injury pattern displays pathological and diagnostic 

similarities to ischemic cardiac injury seen in the context of coronary artery 

disease.52,61,64 Population studies and case reports have indicated that CO exposure 

can create a pro-thrombic state, leading to an increased risk of arterial, venous, and 

stent thrombosis. The mechanism behind this is not known.42 

 
1.3.3 CO-Induced Myocardial Damage – Cellular Toxicity  
 

The specific cytotoxic effects of CO on cardiac tissue are complicated and still 

not fully understood. At the subcellular level, CO is both directly and indirectly toxic to 

the mitochondria. When dissolved CO diffuses into the myocardium, it binds to the 

heme complex of the intracellular O2 carrier myoglobin with an affinity 60-times greater 

than that of O2. This displaces O2 and rapidly depletes the O2 supply to the 

mitochondria, impairing oxidative phosphorylation.44  

Direct mitochondrial toxicity of CO is once again, multifaceted and complex. CO 

specifically binds and inhibits the terminal electron acceptor of the electron transport 
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chain (ETC), cytochrome c oxidase (CcO), which causes uncoupling of the ETC and 

impaired adenosine triphosphate (ATP) production.65,66 Cardiac muscle is then forced to 

switch to anaerobic glycolysis to produce energy, resulting in lactic acidosis.59      

Mitochondria continuously produce reactive oxygen species (ROS), commonly known 

as “free radicals,” as a normal byproduct of oxidative phosphorylation. These ROS are 

normally scavenged by the natural antioxidant glutathione. However, CO exposure 

depletes glutathione levels in cardiac tissue, leading to unchecked ROS production, lipid 

peroxidation, and tissue damage.59,67,68 At tissue concentrations greater than 88nM, CO 

has also been shown to trigger apoptosis in endothelial cells via NO-mediated activation 

of the pro-apoptotic enzyme caspase-1.69 

Cardiac ion channels have recently been shown to be susceptible to modulation 

by CO, however the effects and mechanisms are again poorly understood and no fully 

comprehensive data on this phenomenon has yet been published.70 Acute CO exposure 

is closely associated with the development of atrial and ventricular arrhythmias, 

elongated QT intervals, and ischemic ST and T wave changes.44,59,61,70–73 The risk of 

arrhythmia in CO poisoning increases if additional stress is placed on the heart and in 

patients with existing cardiac pathology.71 The current leading theory behind the 

development of arrhythmias in CO poisoning indicates that CO prolongs the late inward 

Na+ flux of the Nav1.5 channel and the associated Ca2+ transient via NO-mediated 

pathways, leading to action potential prolongation and early after-depolarization-like 

arrhythmias.74,75  
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Figure 3 – Pathophysiology of CO-Mediated Cardiotoxicity. 
Adapted from: “Pathophysiology, clinics, diagnosis, and treatment of 
heart involvement in carbon monoxide poisoning” by Lippi et al., 2012, 
Clinical Biochemistry, 96:1278-1285. Copyright 2012, Elsevier. 
Adapted with permission. 
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1.3.3 The Respiratory System & Blood Chemistry in CO Poisoning 
 
 As expected with any hypoxic insult, CO poisoning is associated with a 

compensatory increase in minute volume (MV) to attempt to compensate for the tissue 

O2 deficit. This hyperventilation response to CO poisoning has been well documented in 

human and animal subjects.76–79 But unlike hypoxic-hypoxia, such as from nitrogen 

asphyxiation, pure CO poisoning is not associated with a significant decrease in the 

arterial partial pressure of O2 (pO2) as the concentration of atmospheric O2 remains 

relatively unchanged despite the presence of CO.76 In fact, CO poisoned victims tend to 

demonstrate normal or increased arterial pO2 values and stable or decreased arterial 

pCO2 values.76,77,80 However, accurate in vivo blood gas data on acute pure CO 

exposure is limited and unreliable as many studies combined CO exposure with 

decreased concentrations of O2 or attempted to model CO exposure using hypoxic-

hypoxia alone.81,82 Pure CO poisoning differs from CO poisoning associated with smoke 

inhalation, as other components of smoke will displace atmospheric O2 and create a 

hypoxic environment.9  

The MV increase seen in hypoxic-hypoxia is mediated by peripheral aortic pO2 

chemoreceptors, whereas it is believed that the MV increase in CO poisoning is 

mediated via central pH chemoreceptors that respond to the decrease in cerebrospinal 

fluid (CSF) pH that accompanies cerebral lactic acidosis.76,77 Doblar and colleagues 

also proposed that cerebral cortex hypoxia could lead to release of the normal inhibitory 

influence of higher brain centers on respiratory drive.76  

 Acute pulmonary edema commonly accompanies severe CO poisoning and is 

noted during autopsy in 66% of CO fatalities.48,83,84 While the exact mechanism(s) 
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behind this remain elusive, rabbits exposed to 8000ppm CO balanced in air 

demonstrated an increase in alveolar epithelium permeability resulting in 

noncardiogenic pulmonary edema similar to that seen in humans.85 But given the 

cardiotoxic effects of CO and left ventricular dysfunction seen severe CO poisoning, the 

possibility of cardiac involvement in CO-induced edema formation has been reported 

and cannot be ruled out without further research.86 

 The little reliable data on arterial blood gases in CO poisoning do not provide a 

clear indication as to the presence and/or magnitude of arterial pH changes that may or 

may not take place during exposure.76,76,80,87,88 Goats exposed to 10,000ppm CO in 

40% O2 for 10 minutes demonstrated no significant changes in arterial pH, although 

CSF pH did drop significantly.76,76 Sheep exposed to 10,000ppm CO in air for 35 

minutes showed no changes in blood lactate levels or pH. CSF pH and brain tissue 

lactate were not measured in this study, as the authors did not believe that appreciable 

pH differences could be observed between blood and cerebral tissue comparments.89 

Rats exposed to 10,000ppm CO in 40% O2 for 10 minutes showed decreases in arterial 

pH from 7.47 to 7.24.87 Human studies have concluded that blood pH does not correlate 

with %COHb, severity of exposure, patient acuity, or prognosis and has thus been 

deemed of limited to no use in the clinical setting.88,90  

 Data on blood lactic acid levels in animal models of CO exposure are 

inconclusive. No significant changes in lactate levels were appreciated in rat, dog, goat, 

porcine and sheep models of CO poisoning. However, the concentration of CO used 

and exposure time varied drastically between these studies.62,89,91–93 Unlike the 

published animal models, lactic acid elevation has shown to be an effective indicator of 
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prognosis following CO poisoning in human patients.49,94 Moon and colleagues reported 

elevated lactate levels in 70% of CO poisoned patients that required inpatient 

admission. There was no correlation between %COHb and prognosis in this study.49   

 
1.4 Effects of CO on the Brain  
 
1.4.1 Acute Pathophysiology 
 

CO poisoning is associated with a broad spectrum of acute and chronic 

neurological sequelae ranging from mild to severe. Mild CO exposure victims often 

present with headaches, dizziness, nausea, and behavioral changes. Moderate and 

severe CO exposures are associated with seizures, altered mental status, loss of 

consciousness, cerebral edema and neuronal necrosis. The brain is the single most 

oxygen-demanding organ in the body with approximately 50% of that oxygen being 

utilized by the Na+/K+ ATP-ase, which maintains resting neuronal membrane 

potential.95 Proper neuronal function depends on the presence of resting membrane 

potentials, thus making cerebral tissue extremely sensitive to any hypoxic insult.  

Irreparable neuronal damage results within 10 minutes of oxygen deprivation.96  

Multiple lab groups hypothesized that COHb hypoxia causes quantifiable 

decreases in animal whole body (VO2) or cerebral oxygen consumption (CMRO2) and 

oxygen delivery (DO2), but these animal model data are conflicting. Smithline et al. 

reported that whole body VO2 remained constant in a canine model of acute CO 

exposure despite decreased DO2, however this study did not specifically examine 

cerebral metabolism.62 Langston et al. reported just the opposite; their analysis of 

cerebral metabolism in sheep showed that CO exposure caused a decrease in CMRO2 

while DO2 was maintained.89 The literature review by Raub and Benignus concluded 
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that cerebral DO2 remains stable and CMRO2 decreases in a statistically significantly 

manner with %COHb >30%.98 However, a paper by Doblar et al. that was cited in this 

review did demonstrate significant decreases in both DO2 and CMRO2 in goats when 

%COHb rose above 30%, and no change in OER was noted.76 

Analyses of the nicotinamide adenine dinucleotide (NADH) redox state with 

reflectance fluorometry during CO exposure in rat brains sought to expose cerebral 

hypoxia at the mitochondrial level. These studies failed to demonstrate significant 

indicators of mitochondrial stress. Despite the absence of outward signs of cerebral 

hypoxia, these rat studies curiously showed increased extracellular K+ concentrations 

and spontaneous neuronal depolarizations, indicating dysfunction of the Na+/K+ ATP-

ase. This was accompanied by decreased cerebral pH, which was hypothesized to be a 

product of aerobic lactic acidosis.95,98 More recent investigations into the effect of CO on 

mitochondria have provided convincing evidence that CcO inhibition may be the primary 

acute effect of CO on cerebral metabolism.65,66,99–103 

The stable DO2 seen in CO poisoning is due to a %COHb-proportionate 

compensatory increase in cerebral blood flow (CBF) (with regional variations within the 

brain) that has been well documented in small animals, large animals, and human 

studies.89,104–107 In multiple human and animal studies on regional CBF immediately 

following acute CO exposure, the cerebral cortex demonstrated the highest increases in 

CBF while the basal ganglia, specifically the globus pallidus, demonstrated the lowest 

relative increases in CBF.105–108 Perfusion of capillary beds increases uniformly 

throughout the brain as well.87 The mechanism(s) behind the CBF increase have been 

widely debated, with theories in published literature implicating tissue hypoxia, acidosis 
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and hemoglobin-oxygen affinities.106,109–111 However, multiple recent studies have 

shown that effects of CO on cerebrovascular modulation can be blocked to the 

aforementioned NO-cGMP dependent pathways.54,112–114 Additionally, an increase in the 

oxygen extraction rate (OER) is seen along with the increase in CBF, indicating that the 

body is utilizing a rarely-used functional reserve of hemoglobin to sustain oxygen 

delivery.62 Although current data on acute CO-mediated cerebral pathology implicates 

mechanisms other than hypoxia, to the best of our knowledge, no published literature 

on changes in brain tissue oxygen tension (PbtO2) during CO poisoning exists. 

 
1.4.2 Delayed Pathophysiology 
 
 Despite the return of %COHb to normal physiological levels after exposure, 

mitochondrial dysfunction can persist for days, leading to neuronal damage and death 

via necrosis and apoptosis.99 This produces neurological deficits in up to in up to 33% of 

patients that can last for months following exposure. Symptoms generally appear within 

a week following exposure and can include, but are not limited to, dyskinesias, 

Parkinsonian tremors, depression, learning impairments, difficulty focusing, and 

amnesia.115,116 These prolonged neurological deficits are known as delayed neurological 

sequelae (DNS) or prolonged neurological sequelae (PNS).115,117 DNS is closely 

associated with lesions in the cerebral cortex, globus pallidus, and hippocampus, which 

is not surprising given the functions of these regions of the brain in coordinating higher 

learning, fine motor control and memory, respectively.97,118–121 These lesions are most 

clearly seen in vivo using magnetic resonance imaging (MRI) techniques.121 Bilateral 

globus palladi lesions with marked diffusion restriction on diffusion weighted (DW) MRI 
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protocols are considered to be the “classic” radiological indicator of CO-induced 

pathology in the days and weeks following CO poisoning.44,120,122,123 

 The mechanisms behind DNS are not fully understood, but are believed to be 

immune-mediated secondary to unchecked ROS production and membrane lipid 

peroxidation.113,115,117,118,124,125 As COHb dissociates following exposure, there is a 

redistribution of dissolved CO into extravascular tissue driven by the CO partial 

pressure gradient and high binding affinity of CO for intracellular targets like CcO.43 

ROS are produced during uncoupling of the ETC and upregulation of NO synthesis by 

neuronal NOS, resulting in the production of damaging peroxynitrite radicals.113 Unlike 

cardiac tissue, brain tissue does not express myoglobin, a known CO buffer, and is 

therefore more sensitive to the increase in ROS production, especially when coupled 

with CO-mediated antioxidant depletion.124,126 A chain reaction of membrane lipid 

peroxidation ensues, which disrupts normal membrane properties and triggers pro-

apoptotic pathways.113,115,117 

 The variability seen between DNS prevalence and initial presentation has made 

determination of DNS risk factors difficult. Although not 100% predictive, DNS has been 

correlated with %COHb >25%, age >36 years, and exposure time >24 hours.127,128 

 
1.5 Clinical Presentation, Diagnosis & Treatment of CO Poisoning 
 
1.5.1 Clinical Presentation 
 
 The symptoms of CO poisoning are often vague. The most common complaints 

of CO-poisoned patients are headache, dizziness, nausea, weakness, and vertigo. 

Syncope, altered mental status, seizures, and decreased level of consciousness are not 

uncommon with more severe exposures and are associated with poorer 
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prognoses.44,48,97,129,130 Additional findings on presentation can include arrhythmias, 

diarrhea, and abdominal pain.44,48 The often-described “cherry red” appearance of CO 

victims taught to clinicians for decades is rare.131,132 This originated with the observation 

that COHb exhibits a distinctly brighter red color than O2Hb by Hoppe in 1857.133 The 

assumption was made that an increase in %COHb could be noted in the skin and 

mucus membranes. Lethal levels of %COHb must be present before any changes in 

epithelial color are noticed.134 

Diagnosis of CO poisoning is difficult, if not impossible, to make based just on 

symptoms alone and therefore requires accurate history taking sharp clinical acumen to 

raise the index of suspicion and to avoid misdiagnosis. Acute CO poisoning can easily 

go misdiagnosed as other acute low-acuity pathology like viral illnesses, acute anxiety, 

or migraine headache. Chronic CO exposure can present similarly to psychiatric 

illnesses like depression and psychosis.97,135,136 Misdiagnosis of CO poisoning can 

endanger not only the patient, but clinicians and first responders as well if entry is made 

into a hazardous environment, which was demonstrated when 12 fire-rescue personnel 

were admitted for CO poisoning after treating a patient in a CO-filled house.136  

 
1.5.2 Diagnostic Workup & Common Findings 
 
 Once suspicion of CO exposure has been raised, simple diagnostic confirmation 

of CO exposure can be carried out via invasive or non-invasive %COHb analysis. Both 

%COHb analysis techniques make use of the unique differences between the 

spectrophotometric absorbance spectra of O2Hb and COHb to quantify %COHb, and 

each has advantages and pitfalls.136–138 Invasive %COHb testing is considered the gold 

standard of accuracy, but requires laboratory equipment and a blood sample. Non-
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invasive COHb-oximetry is portable, easy to use and interpret, and uses a finger probe 

to assess %COHb. This technology has been reported to be less accurate than 

laboratory testing, although still useful as a screening tool for occult poisoning.136 Many 

fire departments and EMS agencies use this technology in conjunction with handheld 

atmospheric CO detectors in both the emergency medical and fireground setting. These 

allow for simple and rapid pre-hospital confirmation of CO poisoning which can aid in 

determination of most appropriate patient destination in the field.137–139 Abnormal 

%COHb levels are >3% for non-smokers and >10% for smokers, however it must again 

be reiterated that %COHb holds no correlation to patient acuity.44,48,129,140 

 Patients with positive %COHb levels should undergo a full ED cardiac workup to 

include ECG with close examination for ischemic changes and QT elongation, cardiac 

biomarker evaluation, and chest x-ray.58,71,129,141 Elongated T-peak-T-end time has 

recently been reported to be a reliable indicator of CO-induced cardiac injury as well.87 

The utility of arterial blood gas analysis has been disputed, but lactate levels correlate 

well to prognosis and should be evaluated.49,94 An echocardiogram is also 

recommended for patients with signs of pulmonary edema.42,59 Patients presenting with 

syncope, altered mental status, seizures, and decreased levels of consciousness 

should undergo neurological imaging studies unless radiological studies would delay 

transfer to a more appropriate treatment center.129,130 If available, magnetic resonance 

imaging (MRI) is the preferred imaging modality for CO poisoning as it offers higher soft 

tissue detail than computerized tomography (CT). Hypodensities in the basal ganglia 

and cerebral edema are common acute findings in brain MRI and CT studies.120,121  
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1.5.3 Current Treatment Modalities & Controversies 
 

Despite over a century of medical research on CO poisoning, the treatment 

remains unchanged. Oxygen therapy is currently the only accepted therapeutic agent 

used for the treatment of CO poisoning. The goal of oxygen therapy is to decrease 

%COHb using simple chemistry; providing an increased atmospheric pO2 to a CO-

poisoned patient shifts the equilibrium of COHb formation and favors dissociation of CO 

from Hb.43,129,130 Although oxygen therapy is considered the gold standard of treatment, 

it is based on the century-old theory that CO pathology comes from COHb formation 

alone.   

The most common method of O2 administration for CO victims is via the non-

rebreather mask (NRB). At an O2 flow rate of 10-15L/min, the NRB is capable of 

delivering 95-100% O2 at ambient atmospheric pressure to a patient and reducing 

COHb t1/2 from 5 hours (breathing ambient air) to 60-90 minutes.9,129,142–144  In patients 

unable to maintain their airway and/or respiratory drive, airway support and artificial 

ventilation using high flow O2 must take the place of a NRB. This is otherwise known as 

normobaric O2 (NBO). Equipment required to administer NBO is simple and cheap to 

operate, readily portable, and easily accessible in hospitals, clinics, and EMS systems. 

All emergency medical first responders are trained to administer NBO and the required 

equipment to do so is required on any emergency response vehicle staffed by any 

trained emergency medical technician (EMT) or higher.145 Administration of NBO pre-

hospital reduces the time exposed patients have to wait to receive treatment, which is 

considered to be equally, if not more important than treatment itself.43 American EMS 

systems have a median BLS response time of less 10 minutes, which allows for 
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extremely rapid O2 administration if CO exposure is suspected.146–148,148 Increased time 

to treatment after CO exposure is associated with decreased efficacy of O2 therapy and 

increased mortality and morbidity.43,131,149,150  

The only significant advancement made in CO poisoning therapy was the 

addition of hyperbaric O2 therapy (HBO) to existing O2 therapy protocols over 50 years 

ago.151 HBO further exploits the mass-action effect of COHb equilibrium by application 

of O2 at 2-3 times normal atmospheric pressure, further driving dissociation of CO from 

Hb and can reduce COHb t1/2 to 15-30 minutes.48 While the optimal HBO dose is still yet 

to be determined and protocols vary between facilities, most facilities employ a multi-

therapy protocol of 2.5-3.0atm for periods of 60-90 minutes in the days following 

exposure.127,152–154 Criteria for HBO therapy generally include severe exposures, loss of 

consciousness or syncope, neurological symptoms other than headache, age >36 years 

and %COHb >25%. Pregnant patients are also HBO candidates due to the high affinity 

of fetal Hb for CO discussed previously.48,127,154 However, no standardized criteria for 

HBO therapy currently exist, and thus vary widely between facilities equipped to provide 

it.155  

HBO therapy is considered the modern gold standard for severe CO exposure, 

but it is not without limitations. Few hospitals are equipped with critical care hyperbaric 

chambers and the cost of operation is exorbitant. Patients often require transfer to a 

tertiary facility and the logistics of interfacility transport and hyperbaric chamber 

preparation can further increase time to HBO therapy, which is associated with a 

decrease in HBO efficacy and an increase in morbidity and mortality.131,149,150 
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Interfacility critical care transport is also expensive, with helicopter EMS transport 

(HEMS) costs of approximately $20,000 per flight.156,157 

There is no question that both modalities hasten the dissociation of CO from Hb 

through basic biochemical mechanisms; this phenomenon has been well documented 

since the early 20th century.127,154,158,159 But despite decades of use, the efficacy of both 

O2 therapy modalities remains widely debated in the literature. Recent studies have 

found that the data on %COHb reduction with NBO are unreliable and that NBO does 

not offer any protection from DNS compared to breathing ambient air.159–161 Efficacy of 

HBO compared to NBO also remains to be definitively elucidated. Due to a 3% mortality 

rate of CO-exposed patients presenting to hospitals and no published data 

demonstrating that HBO decreases mortality, the goal of HBO therapy is to prevent 

DNS, not to prolong short-term survival.127 Published studies on the efficacy of HBO are 

fraught with methodological limitations that make drawing conclusions difficult, but some 

indicate that HBO provided without delay is effective at ameliorating cellular damage 

and DNS in human and animal models.66,115,127,128,131,153,161,162,162,163 Other studies and 

retrospective reviews of existing data were unable to demonstrate any benefit from HBO 

therapy.43,160,164,165  

Additional arguments have been made that O2 therapy can actually exacerbate 

CO-induced oxidative stress. Oxygen therapy, particularly HBO, induces ROS 

production in proportion to the pO2 in the chamber and time of treatment, leading to 

DNA damage, membrane lipid peroxidation, and activation of pro-apoptotic 

pathways.166–170 CO-mediated ROS formation, antioxidant depletion, and subsequent 

cellular damage have been implicated as major pathophysiological mechanisms in CO 
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poisoning.59,67,68,113,117,118,124,125 Although it remains to be definitively studied, it is 

therefore likely that the oxidative stresses from O2 therapy and CO poisoning are 

additive, which could exacerbate pathology.125 Oxygen is also a potent respiratory 

stimulant. Hyperoxia-induced hyperventilation results in hypocarbia, triggering 

vasoconstriction in CO2-sensitive vascular beds in the heart and brain, reducing blood 

flow.43 This phenomenon occurs even in the presence of CO and can result in 

decreased DO2 to these tissues despite the increase in pO2.43,171    

Exploration into therapies other than O2 has, much like O2 therapy, hinged upon 

the hypoxic theory of CO poisoning. Attempts to increase oxygen delivery have included 

the use of artificial oxygen carriers (perfluorocarbons and hyper-oxygenated saline) and 

early attempts using blood transfusions, but these have not been adopted into clinical 

practice.172–175 Recent studies have found success in utilizing extracorporeal membrane 

oxygenation (ECMO) to reduce COHb and reverse acidosis in severe cases of CO 

poisoning, but no data exists on the effects of ECMO therapy on long-term 

outcomes.176,177 Before the rise of HBO as the standard of care in the 1960’s, an inhaled 

mixture of oxygen and CO2 (carbogen) was employed to decrease %COHb by 

triggering hyperoxic hyperventilation while maintaining a normocarbic state. Fisher and 

colleagues are attempting to bring this treatment modality back into favor.43  

Few attempts have been made to target the effects of CO not mediated by COHb 

formation. Qingsong and colleagues successfully demonstrated amelioration of DNS 

pathology following CO exposure using the free radical scavenger edavarone, but no 

further data is available on this.178 
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The current lack of therapy options for CO-poisoned patients presents a clear 

and present need for a replacement or adjuvant therapeutic options. The ideal treatment 

would be portable, robust, safe, and easily deployed in the field by paramedics. It would 

be efficacious at mediating the well known harmful effects of COHb formation as well as 

the less understood but ever present cytotoxic mechanisms. 

 
1.6 A Potential Antidote 
 
1.6.1 Hydroxocobalamin 
  

Hydroxocobalamin (OHCbl) is a member of the vitamin B12 family, a group of 

four compounds (hydroxocobalamin, cyanocobalamin (CNCbl), methylcobalamin, and 

andenosylcobalamin) that differ only by a single upper axial side chain. These 

compounds exhibit a marked structural similarity to the heme moiety of Hb, differing 

only by one carbon atom and a central cobalt atom instead of iron.179 Physiologically, 

cobalamins serve as cofactors for the methylmalonyl-CoA mutase catalyzed 

isomerization of methylmalonic acid to succinate and the methionine synthase-

catalyzed synthesis of methionine from homocysteine and 5-methyltetrahydrofolate.180 

For the past 40 years it has been used in high doses (5-15g) as a safe and 

effective antidote for cyanide exposure, acting similarly to a chelating agent by binding 

cyanide to become CNCbl.181,182 Hydroxocobalamin is also capable of scavenging free 

NO and inhibiting NOS resulting in vasoconstriction and an increase in blood 

pressure.183–185 This effect has been shown to mitigate endotoxin-induced hypotension 

in rats and has most recently been employed to counteract vasoplegic syndrome in a 

human case study following cardiac surgery by Roderique and colleagues.186,187 The 
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vitamin B12 family also demonstrates remarkable anti-inflammatory and antioxidant 

properties, capable of scavenging free radicals and downregulating the expression of 

pro-inflammatory cytokines and transcription factors.188,189  

 

1.6.2 Reduced Hydroxocobalamin & CO 

 In the late 1960’s, the lab group of Schrauzer and co-workers postulated that 

OHCbl would be capable of reacting with CO, given the affinity of CO for heme-

containing proteins and the structural similarities between heme moieties and OHCbl. 

They successfully demonstrated that OHCbl is capable of reacting with free CO and 

forming CO2, but only when OHCbl was in its reduced state, that is, with the central 

cobalt atom reduced from the Co3+ state to Co2+. Reduced OHCbl will herein be referred 

to interchangeably as B12r, with OHCbl referring to the unreduced form of the 

compound. The same reaction was attempted with carboxyhemoglobin, but was unable 

to produce decarbonylation from Hb-bound CO.190 No further investigation into this 

phenomenon was published until 2013. 

 Based on the work performed by Schrauzer in the 1960’s, a second attempt at 

reacting B12r with carboxyhemoglobin was undertaken by Roderique and colleagues at 

Virginia Commonwealth University to test the viability of B12r as a potential therapy for 

CO exposure. B12r was produced by combining OHCbl with ascorbic acid (vitamin C, 

AA) as a reducing agent in an nitrogenous environment.191 Ascorbic acid was chosen 

because of its powerful action as a reducing agent and safety when administered in 

large doses.192 Confirmation of the presence of B12r was performed by Raman 

resonance spectroscopy (RRS). Using a closed-loop circulatory system containing 
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whole human blood and a CO2 analyzer, they were able to demonstrate increased 

release of CO2 from CO-poisoned blood after B12r injection compared to unpoisoned 

blood. It was hypothesized that B12r was reacting with COHb, catalyzing the 

dissociation of CO from Hb and oxidizing CO to CO2 via an unknown mechanism191 

Further in vitro work by Somera and co-workers probed these findings using additional 

Raman analysis techniques. The data from these experiments indicate a significant 

%COHb decrease in CO-poisoned human whole blood following B12r administration.193 

The in vitro data from the work by Roderique and Somera indicate that B12r could 

potentially function as a therapeutic agent for CO poisoning by interacting with and 

driving dissociation of COHb.  

 
1.7 Hypotheses & Specific Aims 
  

The data obtained from work by Roderique and Somera et al. suggest that B12r 

is capable of reacting with CO in blood and decreasing %COHb in vitro.191,193 

Hydroxocobalamin also a potent NO scavenger and NOS inhibitor, causing an increase 

in blood pressure when administered.183–185,187 Additionally, OHCbl is a powerful 

antioxidant and anti-inflammatory capable of neutralizing ROS and downregulating pro-

inflammatory mediators.188,189 This trifecta of pharmacological mechanisms implicates 

B12r as a potential therapy for CO poisoning. This work was a direct outgrowth of the 

work by Roderique and Somera..  

Additionally, there are currently no published data on changes in brain tissue 

oxygen tension (PbtO2) during and after CO exposure despite ongoing literature debate 

about cerebral perfusion and metabolic changes in CO poisoning. Using a 
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multiparametric monitoring approach in a non-survival surgical model, we aimed to 

characterize the physiological effects associated with acute CO exposure in a rat model 

by examining changes in brain tissue oxygen tension, mean arterial blood pressure 

(MAP), respiratory rate, and arterial blood gas chemistry. We also aimed to evaluate the 

efficacy of B12r as a therapeutic agent for CO poisoning by observing for rescue from 

CO pathology in comparison to control rats administered a normal saline vehicle. 

Specifically, we hypothesized that: 

1. CO poisoning will decrease PbtO2 significantly in rats exposed to CO as 

measured by a Licox® Clark-type polarographic electrode placed into the 

cerebral cortex. 

2. Administration of B12r could rescue PbtO2 of CO-exposed rats within 20 

minutes of administration. Additionally, B12r administration would cause a MAP 

increase within 20 minutes and/or demonstrate blood chemistry improvement 

within 60 minutes in comparison to controls. 

3. B12r would produce the same increase in CO2 off-gassing in vivo as seen in 

prior in vitro work, demonstrated by an increase in observed respiratory rate 

and/or increase in arterial pCO2 within 20 minutes in comparison to controls. 

 
1.8 Basic Approach 
 
1.8.1 Non-Survival Surgery 
  

Physiological parameters of anesthetized rats were recorded during a non-

survival procedure. Parameters monitored included PbtO2 via microelectrode, arterial 

blood pressure via femoral artery catheter, respiration rate, and arterial blood gas (ABG) 
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chemistry. Rats were anesthetized using inhaled isoflurane and were not intubated in 

order to preserve natural compensatory changes in respiratory drive. Following surgical 

placement of monitoring equipment and stabilization, rats were randomly assigned to an 

exposure group to receive either 3000ppm CO balanced in medical air or medical air 

(sham exposure), both of which were mixed with 2% isoflurane. After exposure, all rats 

were switched back to breathing medical air and administered a randomly assigned 

intraperitoneal (IP) injection of either 100mg/kg B12r (50mg OHCbl+50mgAA/mL in 

deoxygenated saline) or equivalent volume of normal saline (vehicle) and monitored for 

60 minutes. Respiratory rate and PbtO2 were recorded every 5 minutes during exposure 

and after treatment. Serial ABG samples were taken prior to exposure and at three time 

points after exposure. Rats were humanely euthanized after 60 minutes of monitoring. A 

visual representation of the procedure timeline is below in Figure 4. 

 

ABG 
 

ABG 
 

ABG 
 

ABG 
 

B12r or 
Vehicle Rx 

0 min +30 min +90 min 

Monitor Placement & 
Stabilization 

(Approx. 90 min) 

Post-Treatment Monitoring CO or Sham 
Exposure 

Licox®, RR, MAP Monitored  

+50 min 

Figure 4 – Visual Representation of Surgical Procedure Timeline.  
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1.8.2 Brain Tissue Oxygen Tension Monitoring 
  

We measured PbtO2 via a Licox® (Integra Neuroscience™) CC1.R Clark-type 

polarographic oxygen-sensitive electrode and associated AC31 monitoring system 

placed into the cerebral cortex of anesthetized rats at -1mm anteroposterior, -3mm 

mediolateral with respect to Bregma using stereotaxic technique. This region of the 

brain was chosen for evaluation due to the prevalence of literature on rat cerebral cortex 

pathology in CO exposure.95,98,119,194 Licox® technology has been used extensively in 

clinical treatment and research of stroke and traumatic brain injury.195–198 The 

microcatheter contains a 1mm oxygen-sensitive electrode that consists of gold and 

silver electrodes within an oxygen-permeable membrane and measures the partial 

pressure of dissolved oxygen in the extracellular space. Dissolved oxygen diffuses 

across the membrane and is reduced by the electrode in a temperature-dependent 

reaction, creating a current proportional to the concentration of oxygen.199  

This device allows for real-time analysis of PbtO2, which is believed to represent 

the balanced between O2 delivery and consumption, reflecting the availability of O2 for 

metabolic processes. Normal PbtO2 range is 20-35mmHg, although this can vary 

depending on the study and species evaluated. Reported mean normal PbtO2 values 

were 29.4mmHg in a murine study, 28mmHg in dogs, 42mmHg in cats, and 33-36 in 

humans.200 The critical PbtO2 for normal human brain tissue is between 15-20mmHg, 

below which infarction can occur.201 Values below 15mmHg are considered hypoxic and 

are associated with poor outcomes.199  
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 A C 

 
Figure 5 – Licox® Brain Tissue Oxygen Tension Electrode. (A) Schematic 
representation of Licox® electrode oxygen-sensitive tip. 1, Polyethylene tube with 
oxygen-permeable membrane; 2, gold cathode; 3, silver polarographic anode; 4, 
electrolyte chamber; 5, brain tissue. (B) Photograph of the tip of the Licox® 
electrode used. Black circle is placed around the oxygen-sensitive portion. (C) 
Photograph of the entire electrode assembly. 

B 

C 



www.manaraa.com

 32 

 
1.9 Summary of Findings 

 There were no deaths during the procedures. There were no significant 

differences between baseline parameters of groups. All rats exposed to CO 

demonstrated marked decreases in PbtO2 and MAP during exposure. Mean PbtO2 

values decreased from 31.3±1.2 to 18.3±1.0 mmHg and 31.2±0.7 to 18.3±1.3 mmHg at 

end of CO exposure in B12r-treated (n=10) and vehicle-treated rats (n=10), respectively 

(p<.0001). Baseline MAP recordings were 88.23±3.24 in CO-B12r and 89.32±3.54 in 

CO-Vehicle groups. Post-exposure, CO-B12r and CO-vehicle MAP recordings were 

46.23±1.81 and 45.35±2.01, respectively (p<.0001, compared to sham-exposed 

groups). Lactic acid levels were significantly increased after exposure in CO-exposed 

groups with mean lactate levels >3.0mM. This was associated with significant 

hypocarbia and decreases in HCO3- (p<.05). Exposure to CO caused a decrease in 

respiration rates with observed tidal volume increase and Kussmaul-like respiration 

pattern in CO-exposed groups. Rats not exposed to CO did not demonstrate 

appreciable changes in PbtO2 or MAP during sham exposure. Respiration rates 

remained constant in Sham-B12r and Sham-vehicle groups. 

PbtO2 values remained <25mmHg for 40 minutes after exposure and remained 

below baseline levels in the CO-Vehicle group. The CO-B12r group demonstrated rapid 

recovery of PbtO2 to >25mmHg and MAP to >75mmHg within 15 minutes of treatment.  

CO-Vehicle group MAP was significantly lower than sham-exposed groups during the 

entirety of post-exposure monitoring (p<.001). A significant transient MAP increase was 

seen in the Sham-B12r group 5 minutes after treatment that persisted for 15 minutes 

(p<.05). No significant blood chemistry differences were noted between CO-B12r and 
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CO-vehicle rats after treatment. Lactic acid levels in CO-exposed groups decreased 

throughout monitoring without significant difference between the groups. Respiratory 

rate remained significantly lower in the CO-B12r compared to the CO-Vehicle group for 

25 minutes after treatment. Sham-B12r and sham-vehicle groups demonstrated normal 

arterial blood gas composition at all time points and did not exhibit lactic acidosis, 

indicating adequate surgical technique and anesthetic management.  
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MATERIALS & METHODS 

 
  
2.1 Materials 
 

Ascorbic acid and hydroxocobalamin were obtained from Sigma-Aldrich and 

were of analytical grade. All gases were obtained from Airgas™ and contents certified 

by the manufacturer. Gases used were medical air, USP and 2500ppm CO balanced 

with medical air. Licox® components were obtained from Integra Neuroscience™; a 

CC1.R probe (0.5mm diameter, 1.0mm sensitive tip) was used to measure PbtO2 in 

conjunction with the AC31 PbtO2 monitor and calibrated for temperature using the C8.B 

temperature probe. The stereotaxic frame used was a Stoelting™ model 51500 single-

arm dual rat/mouse frame. Blood pressure was monitored using the MP150® hardware 

system in conjunction with AcqKnowledge 4.0® software. Blood gas analysis was 

performed using a Radiometer™ ABL 800 Flex clinical blood gas analyzer.  

Surgeries were performed inside of a fume hood in order to minimize any escape 

of carbon monoxide. Inside of the fume hood was a full compliment of surgical lights, 

instruments, and an electric homeothermic heating pad with rectal probe. The surgical 

suite setup for arterial line placement is depicted in Figure 6, setup for Licox® 

monitoring is depicted in Figure 7. 
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Figure 6 – Surgical Equipment for Arterial Line Placement. (1) Dissecting microscope; 
(2) lights, (3) homeothermic warming unit (warming pad underneath drape, rectal probe in 
center of drape); (4) surgical instruments, catheter material, suture material; (5) pressure 
transducer; (6) BioPac™ MP150®; (7) digital clock. Not pictured: anesthesia equipment, 
gas tanks. 

3 
4 

5 

6 
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Figure 7 – Surgical Equipment for Licox® Electrode Placement & Monitoring. (1) 
Dissecting microscope, moved out of suite; (2) lights; (3) homeothermic heating equipment; 
(4) surgical instruments; (5) pressure transducer; (6) BioPac™ MP150®; (7) digital clock; (8) 
loupes; (9) stereotaxic frame and anesthetic nose cone; (10) stereotaxic manipulator arm; 
(11) Licox® oxygen and temperature probes taped to manipulator arm; (12) Licox® cables; 
(13) digital timer. Not pictured: Licox® AC31 monitor, Dremel® tool, anesthesia machine. 
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2.2 Production of Reduced Hydroxocobalamin 
 

Powdered hydroxocobalamin and ascorbic acid (AA) were obtained from Sigma-

Aldrich.  Hydroxocobalamin was stored in a dark brown glass bottle at 4°C in a dark 

refrigerator until needed. Ascorbic acid (AA) was stored in a sealed polypropylene 

container at ambient temperature until needed. Deoxygenated saline was produced by 

bubbling nitrogen through a 0.9% saline solution in an Erlenmeyer flask under a vacuum 

for 90 minutes before transfer into the nitrogenous environment within an airtight glove 

box. Antidote was produced using 50mg OHCbl and 50mg AA per mL of deoxygenated 

saline. This 1:1 mass ratio ensured adequate reduction of the OHCbl to B12r as noted 

by Raman analysis with the assistance of Capt. Leo Somera.193  

Each dose of antidote was created individually. Using an analytical balance, 

50mg of OHCbl and AA was measured out into separate 5mL syringes with plungers 

removed. The two syringes were then placed into the airlock of our glove box and the 

airlock was flushed with gaseous nitrogen for a minimum of seven minutes to remove 

any ambient air. The syringes were then moved into the glove box, which contained a 

100% nitrogen environment to prevent oxidation of the antidote from atmospheric O2. 

Using a third syringe, a 1mL aliquot of deoxygenated saline was injected into the 

syringe containing the AA. This syringe was then connected to a three-way stopcock 

along with the syringe containing the OHCbl. The AA/saline solution was  flushed back 

and forth between the two syringes for a minimum of 30 seconds to agitate the reagents 

and allow proper mixing. The mixture was then transferred into one syringe and capped 

with a needle. Antidote preparations were left in the nitrogenous environment until 

needed and were warmed on the heating pad prior to administration. 
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2.3 Animals & Ethics Statement 
 

All procedures followed the guidelines established in the Guide for the Care and 

Use of Laboratory Animals (U.S. Department of Health and Human Services) and were 

approved by the Institutional Animal Care and Use Committee of Virginia 

Commonwealth University (Protocol Number AD10000569). The surgical procedure 

was observed and approved by VCU Department of Animal research veterinary staff. 

Male Sprague-Dawley Rats (SD rats) were used for surgical procedures. Rats were 

obtained from Harlan Laboratories, Inc, and weighed 315-370g on the day of the 

procedure.  All rats were housed two per cage in a 12-hour on/off light cycle vivarium 

with ad libitum access to food and water. VCU Department of Animal Resources staff 

carried out all cage maintenance and provided enrichments.  Rats were acclimated to 

the lab and vivarium with weights monitored daily for a minimum 7 days prior to surgical 

procedures.  During acclimation, rats were habituated to handling by experimenters.  

 
2.4 Non-Survival Surgical Procedure 
 
2.4.1 Experimental Group Assignment & Procedural Preparation 
 
 Rats were divided into 4 groups according to assigned exposure (CO or sham) 

and treatment (B12r or normal saline “vehicle”) received. Experimental groups are 

outlined in Table 1. Assignment of rats to experimental groups was randomized. 

 
Exposure-‐
Treatment	   Sample	  Size	  (n)	  

CO-‐B12r	   10	  
CO-‐Vehicle	   10	  
Sham-‐B12r	   5	  
Sham-‐Vehicle	   5	  

Table 1 – Experimental Exposure-Treatment Groups and Sample Sizes 
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Prior to the start of surgeries, all instruments and work areas were cleaned. All 

equipment was prepped and checked for proper function. The blood pressure 

transducer was calibrated at 0mmHg using ambient air pressure and 120mmHg using a 

mercury sphygmomanometer. Each rat was weighed prior to anesthesia induction. This 

surgery was a non-survival procedure, so aseptic technique was used, as opposed to 

sterile technique. 

Anesthesia induction took place in an induction chamber mounted to the  

anesthesia machine. Rats were induced with 4% isoflurane balanced in medical air for 3 

minutes. Following induction, the rat was then removed from the chamber and hair was 

clipped over the left inguinal area and superior aspect of the head. If the animal moved 

during clipping, it was placed back into induction chamber at 4% isoflurane until 

cessation of movement. The rat was then placed supine on the surgical table and the 

nose inserted into a nose cone delivering anesthetic gas. Isoflurane was reduced to 2% 

after induction. A digital homeothermic heating pad placed dorsally on the rat and rectal 

temperature probe were used to maintain a core temperature of 36.6°C. Anesthesia 

checks were performed every 15 minutes by pinching the toes and observing for a pain-

withdrawal response. 

 
 
2.4.2 Femoral Artery Cannulation 
 

The arterial catheter was prepared prior to the start of surgery and consisted of a 

3-4” length of PE-50 tubing with a one-way pin port connected to one end. The volume 

of the catheter was determined using a 1mL syringe; catheter volume was between 40-

70μL. Each catheter was flushed with a 4u/mL heparinized saline solution. 
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Using forceps and blunt dissection scissors, a 2cm incision was made into the 

left inguinal crease. Skin and subcutaneous tissue were then retracted. The entire 

surgical site was irrigated with 0.25% bupivacaine warmed on the homeothermic 

heating pad and allowed to sit on tissue for minimum 1 minute before removal with 

gauze. The femoral artery was located and dissected away from the femoral vein and 

sciatic nerve using microsurgical forceps under a dissecting microscope. The artery was 

ligated proximal to the bifurcation of the epigastric artery using a surgeon’s knot in 4-0 

silk. A hemostat was clipped to the ligature tail and gently retracted to pull distal traction. 

A second ligature of using 4-0 silk was passed underneath the artery proximal to the 

initial ligature. A single overhand knot was placed into the thread, which was then 

clipped to hemostats and retracted towards the midline to close off the arterial lumen. 

Using microsurgical scissors, an incision was cut across 1/3 of the arterial wall between 

the ligatures. The opening was retracted using microsurgical forceps and a short length 

of PE-50 tubing was threaded into the arterial lumen. Proximal ligature traction was 

reduced, and the catheter advanced approximately 1-2cm. The catheter was then 

aspirated for blood return and flushed with 4u/mL heparinized saline to prevent 

coagulation. The proximal ligature was then tightened and secured with a surgeon’s 

knot. The incision was closed with staples or continuous suture using 2-0 nylon. The rat 

was then moved back into induction chamber with 2% isoflurane maintained in order to 

prepare the surgical area for Licox probe insertion. Isoflurane concentration was 

adjusted in small percentages in order maintain non-responsiveness to foot pinches. 

Blood loss during arterial cannulation was estimated to be less than 100μL for each rat 

by using 1 or less cotton-tipped applicators for bleeding control. This technique was 
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adapted from Jesperson, et al. with additional technical guidance provided by VCURES 

professors Dr. Jiepei Zhu and Dr. Penny Reynolds.202 

 
2.4.3 Licox® Placement 
 

The dissection microscope was swung out of the surgical suite and the heating 

pad removed. The stereotaxic frame was placed centrally into the surgical suite and the 

heating pad placed on top of the frame platform then covered with a clean drape. A 

stereotaxic nose cone was used to deliver anesthetic gas. The rat was placed onto the 

stereotaxic frame and the head secured in a level position via ear bars and nose cone. 

Once secured, the pin port of the arterial cannula was connected to the pressure 

transducer and arterial pressure monitoring was initiated. Arterial blood pressure was 

monitored continuously for the remainder of the procedure.  

A midline incision was made down the length of the skull using a #11 scalpel and 

the incision was retracted using microsurgical retractors. The periosteum was peeled 

away from the skull using forceps. A 19-guage needle taped to the arm of the 

stereotaxic frame served as a navigation guide. Under 10x loupe magnification, the 

Bregma point was located on the skull by locating the intersection of the coronal and 

sagittal sutures. The coordinates of the Bregma point were recorded. The region of 

interest (ROI) coordinates were then calculated by moving the needle 1mm posterior 

and 3mm lateral (written as -1mm AP, -3mm ML) with respect to Bregma to allow for 

access to the primary somatosensory cortex. The right side of the skull was used on 

each rat to maintain consistency. This location was marked with a felt-tip pen and the 

stereotaxic manipulator arm was removed. This location would be used for insertion of 

the Licox® oxygen-sensing electrode. A second location was marked contralaterally at 
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the approximate same location to serve as the insertion point of the temperature probe; 

placement of this probe did not require specific stereo taxic coordinates. 

Access to the cranial vault was achieved using a Dremel™ tool with a 2mm burr 

drill bit. In order to prevent major damage to brain tissue caused by the Dremel™ drill, a 

technique was devised to safely drill burr holes. Using two hands, the drill was slowly 

advanced through the roof of the cranium until a thin, pliable film of bone remained. A 

small hook was created on the end of a 19-guage needle by applying repetitive blunt 

force to the tip of the needle against the lab bench in order bend the tip of the needle 

towards the bevel. The bent tip of the needle was then used to gently puncture the edge 

of the thin bony film and gently lift it away from the underlying brain tissue. Forceps 

were then used to extract the disk. This process was repeated for both marked sites. 

The dura mater was gently pierced and incised using the same bent tip of the needle 

used to remove the film from the craniotomy site. Bilateral craniotomy burr holes are 

pictured in Figure 8. 

The Licox® CC1.R electrode hub was then taped to the top of the manipulator 

arm and the electrode tip taped to the end of the arm with an approximately 1cm 

overhang of the probe tip. The hub of the temperature probe was then taped to the shaft 

of the manipulator arm, as shown in Figure 9A.  The manipulator arm was positioned 

with the CC1.R probe tip over the insertion site and the tip was lowered to the surface of 

the brain tissue. Using loupe magnification and fine adjustment knobs of the 

manipulator arm, the probe was then lowered into the brain parenchyma to a depth of 

2.3mm. This depth ensured that the 1mm oxygen-sensitive portion of the electrode 

would be positioned within the cortex. Catheter placement is depicted in Figure 9B. The 
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temperature probe was then inserted into the respective insertion site and both probes 

were connected to the Licox® AC31 monitor, which was then powered on. The probes 

were then allowed to equilibrate and stabilize for 30 minutes. Anesthetic gas was 

maintained at 2% for the remainder of the procedure to ensure consistency. All rats 

were stable at this concentration of isoflurane. 

 

Figure 8 – Bilateral Craniotomy Holes. (1) CC1.R oxygen probe site (-
1mmAP, -3mmML); (2) Bregma point; (3) CB.8 temperature probe site. 

3 

1 

2 
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2.4.4 Insult, Treatment, & Post-Treatment Monitoring 

 
Following the 30-minute stabilization period, a 100μL arterial blood sample was 

aspirated from the arterial cannula and analyzed using the ABL 800 Flex® blood gas 

analyzer.  The following parameters were analyzed during blood gas analysis: pH, pO2, 

pCO2, HCO3-, ctHb, %COHB, and lactic acid concentration. The arterial line was then 

flushed with a volume of heparinized saline equal to the catheter volume in order to 

remove blood from the catheter lumen. Exposure procedure was then initiated. This 

time point was flagged in the AcqKnowledge software for later reference and is 

considered Time 0, as per Figure 4. Rats were exposed for 30 minutes to either 

2500ppm CO balanced in medical air (insult) or medical air (sham exposure). PbtO2 

was recorded every 5 minutes beginning at Time 0. Respiration rate was also recorded 

every 5 minutes concurrently with PbtO2 recordings by observing chest rise for 30 

seconds and multiplying the observed rate by a factor of 2. Isoflurane was continuously 

1 

2 

Figure 9: Licox® PbtO2 Electrode Preparation & Placement (A) 
Licox® electrodes taped to stereotaxic manipulator arm. PB) Electrodes 
after placement into brain parenchyma. (1) Licox® CC1.R probe; (2) 
Licox® C8.B temperature probe. 

B A 
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administered at 2% with the assigned exposure gas. At the end of exposure protocol, 

Time 30, another 100μL arterial blood sample was obtained and analyzed. This time 

point was marked in the AcqKnowlege software. All rats were immediately switched 

back to breathing medical air with 2% isoflurane and each rat was administered 

administered the assigned IP injection of B12r according to a weight-based dosing 

scheme given in or an equivalent volume of isotonic normal saline (Table 2).  

Intraperitoneal administration was chosen to maintain consistency with methods used in 

previous studies conducted in our laboratory on B12r as a potential therapy for CO 

poisoning.  

 

 

 

 

 

 

 

 

 

 

 

Dose: (100mg OHCbl + 100mg 
AA)/ kg 

Weight 
(g) 

Dose 
OHCbl + 
AA (mg) 

Dose 
Volume 
(mL) 

300 30 + 30 0.6 

325 32.5 + 
32.5 0.65 

350 35 + 35 0.7 

375 37.5 + 
37.5 0.75 

400 40.0 + 
40.0 0.8 

425 42.5 + 
42.5 0.85 

A 1:1 mass ratio of 50mg/mL OHCbl and AA was used and administered at 
100mg/kg intraperitoneally. Rats assigned to vehicle treatment received an 
equivalent intraperitoneal dose of normal saline. 
 

Table 2 – B12r Dosing Protocol 
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PbtO2 readings were recorded every 5 minutes for another 60 minutes. 

Additional arterial blood samples were obtained and analyzed at 20 and 60 minutes 

(Time 50 and Time 90, respectively) after treatment administration. The 20 minute post-

administration time was chosen because we noted that rats receiving B12r were 

excreting purple urine 15-20 minutes following intraperitoneal injection, indicating that 

the treatment was not only in the vasculature but also being actively cleared by the 

animal’s renal system. Monitoring was terminated 60 minutes after antidote 

administration (Time 90) and each animal was humanely euthanized via IP injection of a 

high-dose pentobarbital and phenytoin solution (Euthasol®, Virbac Animal Health™).  

Upon completion of the procedure, mean arterial pressure data were obtained 

using the hemodynamic analysis algorithm within the AcqKnowledge software. A 30-

second period of time was selected at 5 minute intervals to correspond with PbtO2 

measurements and the mean arterial pressure was recorded. 

2.5 Statistical Analysis 

 PbtO2 and MAP data were analyzed using the SAS™ software Type 3 Tests of 

Fixed Effects analysis algorithm and paired Student’s t-tests with corresponding p<.05 

considered significant. Arterial blood gas parameters and respiratory rate data were 

analyzed using StatPlus Pro™ two-way ANOVA. Fisher Least Square Difference tests 

and paired Student’s t-tests were used for inter-group comparisons with corresponding 

p <0.05 considered significant. 
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RESULTS 

3.1 Brain Tissue Oxygen Tension Results 

 Mean PbtO2 values and standard deviations were calculated for all 

measurements (Table 3) and plotted against respective time points (Figure 10A). Mean 

percent change and standard deviation from PbtO2 baseline was calculated and plotted 

as well (Figure 10B). The individual PBtO2 trajectories with calculated means for 

subjects in each test group are presented in Figures 11A-D.  

Statistical data were performed using SAS™ Type 3 Test of Fixed Effect 

ANOVA, which was felt to be a more appropriate algorithm than standard two-way 

ANOVA in order to account for individual subject baseline differences. Inter-group 

significance calculations at relevant time points were carried out using paired Student’s 

t-tests in order to avoid the inherent increased risk of falsely significant differences 

associated with use of population-derived means in variance analysis. Summary 

statistical data and relevant inter-group comparisons are given in Table 4. Reported F-

Values indicate significant effect on PbtO2 over time and between groups (F=248.94, 

p<.0001; F=56.14, p<.0001). 

No statistical difference was noted between all groups prior to start of the 

exposure protocol (Table 3). All rats exposed to CO exhibited marked decreases in 

PbtO2; mean PbtO2 decreased from 31.3±1.2 mmHg to 18.3±1.0 mmHg in CO-B12r rats 

and from 31.2±0.7 mmHg to 18.3±1.3 mmHg in CO-Vehicle rats (p<.0001 in comparison 

to baseline and sham-exposed groups). There were no statistical significances between 

the PbtO2 values of the two CO-exposed groups after or during the 30-minute exposure 

(p>0.5, p=1.0 at end of exposure). Sham-B12r and Sham-Vehicle rats did show a small 



www.manaraa.com

 48 

PbtO2 increase during exposure from 30.7±0.6 to 31.2±1.0 and 30.6±0.6 to 31.7±9, 

respectively (p<.05).  There was no statistical difference between the PbtO2 of the two 

sham-exposed groups (p>0.2). 

 Neither B12r nor Vehicle treatments had a significant effect on PbtO2 in sham-

exposed rats as compared between and within the two sham groups and (p>0.1). 

Poisoned rats treated with B12r demonstrated a rapid PbtO2 increase with recovery to 

above the published murine mean PbtO2 of 29.4mmHg within 55 minutes of 

administration (29.8±1.9 mmHg, p<.0001). There was no statistical significance 

between the CO-B12r group and Sham groups 35 minutes after treatment (p<.05). The 

recovery seen in the CO-Vehicle group was significantly slower in comparison to the 

CO-B12r group; PbtO2 did not reach >25mmHg until 45 minutes post-treatment and did 

not return to baseline (p<.0001 compared to sham groups at all time points after 

treatment). Differences in PbtO2 between CO-B12r and CO-Vehicle rats were 

statistically significant for all time points after administration (p<.0001). 
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Effect	   DF	   Den	  DF	   F-‐Value	   Pr>F	  
Rx	   3	   15.8	   248.94	   <.0001	  
Time	   18	   431	   56.14	   <.0002	  
Treatment*Time	   54	   374	   22.56	   <.0003	  

Time CO-B12r CO-
Vehicle 

Sham-
B12r 

Sham-
Vehicle 

0 31.3±1.2a 31.2±0.7a 30.7±0.6a 30.6±0.6a 
5 26.9±1.4 25.9±1.8 30.5±0.4 30.9±0.6 
10 23.3±1.5 22.8±1.4 30.6±0.4 30.9±0.5 
15 21.4±1.2 21.4±1.7 30.9±0.7 31.0±0.6 
20 19.8±1.0 20.1±1.6 30.9±0.5 31.2±0.4 
25 18.9±1.0 18.7±1.0 30.8±0.7 31.5±1.1 
30 18.2±1.0b 18.2±1.3b 31.2±1.0c 31.7±0.9c 
35 20.9±2.0d 19.2±1.3 31.2±1.1 31.8±1.0 
40 23.5±1.7e 20.1±1.7 31.3±1.0 31.7±1.2 
45 25.8±2.0 20.9±1.6 31.8±1.0 31.5±1.2 
50 28.2±1.8 22.0±1.5 31.7±0.7 31.4±1.1 
55 29.4±1.9 23.0±0.6 32.0±0.7 31.5±1.0 
60 30.3±1.9 23.6±0.8 31.9±0.9 31.5±1.0 
65 30.5±1.1 24.4±0.6 31.5±0.9 31.4±0.9 
70 30.9±0.7 24.8±0.7 31.6±0.7 31.5±0.9 
75 31.1±1.3 25.8±1.4 31.6±1.1 31.5±1.1 
80 31.1±1.0 26.1±1.6 31.4±1.3 31.5±1.0 
85 31.4±1.0 26.8±1.8 31.2±0.9 31.4±1.0 
90 31.8±0.9e,f 26.9±1.9g 31.4±0.9 31.6±1.1 

F-Values calculated using SAS™ Type 3 Tests of Fixed Effects Analysis of 
Variance. Inter-group significance was calculated using paired Student’s t-tests 
with p<.05 considered significant. 

 a No statistical difference between baseline PbtO2 between all groups. b 

Both CO-exposed showed significant PbtO2 decreases compared to sham 
groups (p<.0001). c No statistical difference between sham groups at Time 
30. d B12r significantly increased PbtO2 compared to CO-Vehicle (p<.01). e 

p<.0001 compared to CO-Vehicle f No significant difference between CO-
B12r and sham groups. g p<.0001 compared to sham groups. 

Table 3 - Mean PbtO2 Values and Standard Deviations of the 
Mean 

Table 4 – Summary Statistical Data for PbtO2 analysis. 
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A 

Figure 10: Mean PbtO2 Values and Standard Deviations of the Mean Over Time. (A) 
Mean PbtO2 values and standard deviations of the mean. Sham-exposed groups remained 
stable with no significant changes between Time 0 and Time 90 (p>0.1). B12r rapidly 
rescued PbtO2 in CO-poisoned rats compared to Vehicle-treated rats within 5 minutes of 
treatment (p<.0001). (B) Mean PbtO2 presented as percent change from baseline with 
standard deviations. 
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Figure 11: Individual PbtO2 Trajectories by Experimental Groups. (A) CO-
B12r, n=10 (on previous page); (B) CO-Vehicle, n=10 (on previous page); (C) 
Sham-B12r, n=5 (on previous page); (D) Sham-Vehicle, n=5.  
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3.2 Mean Arterial Pressure Results 
  

Blood pressure was recorded continuously during the procedure. Mean arterial 

pressure for each subject was calculated from a 30-second sample of the continuous 

recording taken at five-minute intervals to correspond with PbtO2 and respiration rate 

recordings. These data were then averaged with standard deviations calculated (Table 

5) and plotted against time (Figure 12A). Subject data was again normalized for 

individual baselines and presented as percent change from baseline with standard 

deviations (Figure 12B). Because these data were manipulated multiple times to 

produce single mean values, individual subject trajectories by experimental group are 

presented in in Figures 13A-D.  

Statistical analysis was again performed using SAS™ software Type 3 Tests of 

Fixed Effects ANOVA, which was felt to be more appropriate than standard two-way 

ANOVA. Inter-group significance calculations at relevant time points were carried out 

using paired Student’s t-tests in order to avoid the inherent increased risk of falsely 

significant differences associated with use of population-derived means in variance 

analysis. Summary statistical data and relevant inter-group comparisons are given in 

Table 4. Reported F-Values indicate significant effect on PbtO2 over time and between 

groups (F=248.94, p<.0001; F=56.14, p<.0001). 

 There was no difference in mean MAP between groups at the start of the 

procedure (p>0.7). Profound hypotension (46.2±1.9 and 45.4±2.0 mmHg) was seen at 

the end of CO exposure in CO-B12r and CO-Vehicle groups respectively (p<.0001 

compared to shams, p>0.77 between CO-exposed groups). The individual MAP 
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trajectories during CO exposure varied widely, however there were noticeable patterns. 

Figures 12A and 12B demonstrate that some subjects demonstrated rapid 

decompensation within 15 minutes in an almost exponential-like fashion. Others were 

able to compensate adequately for 15 minutes before MAP dropped below 70mmHg. 

Sham-exposed rats did not demonstrate any changes during sham exposure (p>0.9).  

 Cessation of CO exposure caused an immediate upward MAP trend in both CO-

exposed groups. The CO-B12r group exhibited a small but significant increase in MAP 

10 minutes after treatment that lasted for approximately 10 minutes (p<.05 compared to 

CO-Vehicle). MAP recovery in vehicle-treated rats was significantly slower and 

remained significantly lower than both sham-exposed groups by end of monitoring 

(p<.001). There was no significant difference between sham groups and CO-B12r rats 

at Time 90 (p>0.6). Administration of B12r to Sham-exposed rats caused a significant 

transient MAP increase (89.6±3.4 to 98.5±2.3 mmHg) that lasted for 25 minutes 

(p<.0001). Vehicle administration did not affect MAP of Sham-exposed rats (p>0.2 

compared to baseline).  
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Time CO-B12r CO-Vehicle Sham-B12r Sham-
Vehicle 

0 88.2±3.2a 89.3±3.5a 89.6±2.5a 89.0±2.5a 
5 82.7±6.6 83.8±4.9 90.1±3.1 88.5±1.9 
10 76.9±11.2 74.2±9.7 89.7±2.5 89.9±1.6 
15 64.4±13.1 63.0±12.0 89.3±2.3 90.5±1.3 
20 51.7±9.5 53.6±8.8 88.9±2.1 89.7±1.7 
25 46.8±4.2 47.0±4.0 88.7±2.2 89.2±1.5 
30 46.2±1.9b 45.4±2.0b 89.6±3.4b 89.4±2.4b 
35 62.2±9.7 59.3±5.0 98.5±2.3c 89.4±1.5 
40 73.8±7.9d 67.4±3.8d 95.1±3.4 89.5±2.2 
45 77.1±8.3 73.4±5.2 92.7±2.3 87.7±1.3 
50 77.7±7.9 76.2±6.2 93.0±2.7e 88.5±2.0e 
55 79.2±2 78.41±7.0 92.1±4.5 88.4±3.4 
60 80.9±6.4 79.1±7.9 91.3±3.9 90.1±1.8 
65 82.5±6.6 79.1±6.9 91.3±2.6 89.4±1.3 
70 83.4±5.9 79.8±6.7 90.8±2.6 89.5±1.7 
75 85.4±6.3 80.4±6.6 89.3±1.4 89.2±0.6 
80 87.0±5.6 80.3±5.7 89.5±2.5 88.5±1.1 
85 87.2±6.7 80.7±5.0 89.2±3.2 88.7±1.5 
90 87.7±5.3e 80.8±4.15e 88.6±2.7 89.0±2.4 

Effect	   DF	   Den	  DF	   F-‐Value	   Pr>F	  
Rx	   3	   22.8	   116.2	   <.0001	  
Time	   18	   433	   38.01	   <.0001	  
Treatment*Time	   54	   359	   13.16	   <.0001	  

F-Values calculated using SAS™ Type 3 Tests of Fixed Effects Analysis of Variance. 
Inter-group significance was calculated using paired Student’s t-tests with p<.05 
considered significant.  
 

a No significant difference between groups at Time 0. b No significant 
difference between CO-exposed groups or between sham-exposed 
groups. p<.0001 CO-exposed to sham-exposed. c  Significant MAP 
increase after B12r administration. p<.0001 compared to CO-Vehicle. d 
B12r administration significantly increased MAP. p<.05 compared to CO-
Vehicle. e Indicates p<.05 between marked group at corresponding time 
points.  

Table 5: Mean MAP Values and Standard Deviations of the Mean 

Table 6 – Summary Statistical Data for MAP Analysis. 
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Figure 12: Mean MAP and Standard Deviations of the Mean Over Time. (A) Mean 
map and standard deviations of the mean. CO exposure caused similar profound 
hypotension in CO-B12r and CO-Vehicle rats (p>0.7). MAP of sham-exposed groups 
did not change (p>0.9). B12r caused significant transient MAP increases in both 
treatment groups (p<.05). CO-B12r rats demonstrated significantly higher MAP 60 
minutes after treatment that did not differ from sham-exposed groups (p<.001, 
p>0.6). (B) Mean MAP and standard deviations presented as % change from 
baseline. 
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Figure 13: Individual MAP Trajectories by Experimental Group. CO-exposed 
rats displayed marked hypotension with unique patterns of compensation. 
Treatment with B12r caused a transient significant MAP increase in both groups 
in comparison to their respective vehicle control (p<.05). (A) CO-B12r, n=10 (on 
previous page); (B) CO-Vehicle, n=10 (on previous page); (C) Sham-B12r, n=5 
(on previous page); (D) Sham-Vehicle, n=5.  
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3.3 Arterial Blood Gas Results 
  

Arterial blood samples were taken at the following experimental time points 

marked in Figure 4: Time 0 (baseline), Time 30 (post-exposure), Time 50 (20 minutes 

post-treatment) and Time 90 (final). Parameters analyzed included pH, pO2, PCO2, 

HCO3-, ctHb, %COHb, and lactic acid. Values of %COHb were not recorded for rats 

receiving B12r, as hydroxocobalamin interferes with absorbance spectroscopy and 

provides unreliable data.203,204 Means of each parameter and standard deviations were 

calculated (Table 7) and each parameter was analyzed using two-way ANOVA. 

Statistical significance was calculated using the Fisher Least Square Difference test and 

paired Student’s t-tests with p<.05 considered significant. Summary statistical data for 

ANOVA of each parameter are presented in Table 8. 

 There were no differences in baseline (Time 0) arterial blood chemistry between 

groups and all parameters were within normal published limits for anesthetized rats.205 

Mean post-exposure %COHb in CO-B12r and CO-Vehicle groups was 58.4±5.6% and 

60.1±3.6% (p<.0001 compared to shams). A significant increase in pO2 and decrease in 

pCO2 was noted in both CO-exposed groups at Time 30 due to the compensatory 

hyperventilation response to CO (p<.05 compared to baseline and shams). Lactate 

levels increased in CO-B12r (1.0±0.2mM to 3.4±0.9mM, p<.0001) and CO-Vehicle 

groups (1.0±0.2mM to 3.6±0.4mM, p<.0001) and a significant compensatory decrease 

in HCO3- was seen in each group, indicating a compensated acidosis (p<.05). Although 

some individual rats did demonstrate pH changes after exposure to CO, no statistically 
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significant changes in pH were noted at any time in any of the 4 groups. There were no 

significant changes in HCO3
- or lactate in sham-exposed groups at any point. 

 At Time 50, pCO2 remained significantly lower in CO-B12r and HCO3
- remained 

significantly lower in both CO-exposed groups compared to shams (p<.05). Lactate 

levels in CO-B12r and CO-Vehicle decreased; there were no differences between the 

two groups. By Time 90, all parameters except lactate and %COHb showed no 

statistical difference between groups. Again, no difference was seen in the rate of 

lactate decrease between CO-B12r and CO-Vehicle rats. The %COHb decrease from 

60.1±3.6 to 29.9±5.7 indicates an approximate COHb half-life of 60 minutes. Although 

the analysis of Hb concentration (ctHb) was statistically significant over time and 

between groups (F=5.96, F=34.79), all rats remained within normal ranges of ctHb and 

this was attributed to minor surgical blood loss and individual ctHb between subjects 

among the groups. 
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	   Time	  0	  

	   CO-‐B12r	   CO-‐Vehicle	   Sham-‐B12r	   Sham-‐Vehicle	  

pH	  (7.40±0.05)	   7.43±0.01	   7.43±0.02	   7.43±0.02	   7.42±0.01	  
pO2	  (95±14	  mmHg)	   89.9±3.3	   91.2±6.5	   89.2±6.6	   91.8±3.8	  
pCO2	  (45±10mmHg)	   40.5±4.4	   41.0±1.4	   41.6±2.7	   40.2±3.4	  
HCO3

-‐	  (25±3mEq)	   27.3±1.8	   26.5±1.3	   27.5±0.9	   25.9±1.5	  
Hb	  (11.5-‐16	  mg/dL)	   13.4±0.3	   13.5±0.6	   13.8±0.6	   14.2±0.4	  
%COHb	  (1-‐3%)	   2.4±0.2	   2.4±0.2	   2.4±0.2	   2.4±0.1	  
Lactate	  (<1.5mM)	   1.0±0.2	   1.0±0.2	   0.9±0.2	   1.0±0.1	  

	   Time	  30	  

	   CO-‐B12r	   CO-‐Vehicle	   Sham-‐B12r	   Sham-‐Vehicle	  

pH	  (7.40±0.05)	   7.42±0.04	   7.38±0.06	   7.43±0.10	   7.42±0.01	  
pO2	  (95±14	  mmHg)	   99.9±4.9a	   99.9±7.2a	   90.4±7.3	   90.6±3.1	  
pCO2	  (45±10mmHg)	   37.4±2.3b	   36.6±3.8a	   41.4±2.5	   41.1±2.9	  
HCO3

-‐	  (25±3mEq)	   24.6±2.0c	   22.6±2.3a	   27.2±1.0	   24.9±2.2	  
Hb	  (11.5-‐16	  mg/dL)	   13.3±0.4	   13.5±0.5	   13.7±1.0	   14.0±0.4	  
%COHb	  (1-‐3%)	   58.4±5.6d	   60.1±3.6d	   2.4±0.3	   2.2±0.2	  
Lactate	  (<1.5mM)	   3.4±0.9d	   3.6±0.4d	   1.1±0.2	   1.0±0.1	  

	   Time	  50	  

	   CO-‐B12r	   CO-‐Vehicle	   Sham-‐B12r	   Sham-‐Vehicle	  

pH	  (7.40±0.05)	   7.42±0.03	   7.40±0.08	   7.42±0.02	   7.42±0.02	  
pO2	  (95±14	  mmHg)	   86.8±3.6	   85.7±3.9	   89.4±4.0	   88.7±1.6	  
pCO2	  (45±10mmHg)	   38.8±2.4a	   39.8±4.9	   42.1±2.1	   40.9±1.9	  
HCO3

-‐	  (25±3mEq)	   23.8±2.6a	   23.4±2.8a	   26.6±1.1	   26.5±1.6	  
Hb	  (11.5-‐16	  mg/dL)	   13.2±0.3	   13.2±0.5	   13.8±0.7	   13.8±0.2	  
%COHb	  (1-‐3%)	   -‐-‐-‐-‐-‐-‐-‐-‐	   42.9±4.7d	   -‐-‐-‐-‐-‐-‐	   2.4±0.2	  
Lactate	  (<1.5mM)	   3.0±1.0c	   2.9±0.9c	   1.1±0.2	   1.0±0.1	  

	   Time	  90	  

	   CO-‐B12r	   CO-‐Vehicle	   Sham-‐B12r	   Sham-‐Vehicle	  

pH	  (7.40±0.05)	   7.41±0.03	   7.43±0.3	   7.42±0.03	   7.42±0.01	  
pO2	  (95±14	  mmHg)	   88.8±3.9	   88.2±2.4	   88.1±6.8	   89.3±4.2	  
pCO2	  (45±10mmHg)	   39.6±1.5	   40.6±3.6	   40.6±3.5	   39.5±2.8	  
HCO3

-‐	  (25±3mEq)	   25.9±2.3	   26.3±1.4	   26.0±1.1	   26.4±1.4	  
Hb	  (11.5-‐16	  mg/dL)	   13.2±0.4	   13.2±0.4	   13.9±0.6	   13.9±0.2	  
%COHb	  (1-‐3%)	   -‐-‐-‐-‐-‐-‐-‐-‐	   29.9±5.7d	   -‐-‐-‐-‐-‐-‐-‐	   2.4±0.3	  
Lactate	  (<1.5mM)	   1.9±0.7a	   1.8±0.6a	   1.2±0.3	   1.0±0.1	  

 Normal murine reference ranges are given as well. Note the evidence of 
compensatory hyperventilation (increased pO2 and decreased pCO2) and 
compensated lactic acidosis in CO-exposed groups. 
 
a (p<.05), b (p<.01), c (p<.001), d (p<.0001) in comparison to sham groups. 
 

Table 7: Mean ABG Parameter Values and Standard Deviations of the Mean 
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Parameter Variable F-Value p 

pH 
Time 15.8 0.35 
Group 431 0.63 

pO2 
Time 8.01 0.01* 
Group 0.4 0.39 

pCO2 
Time 2.91 0.09 
Group 2.72 0.11 

HCO3- 
Time 5.68 0.02* 
Group 2.58 0.12 

Hb 
Time 5.82 0.02* 
Group 34.79 <.0001* 

COHb 
Time 5.96 0.02* 
Group 6.57 0.01* 

Lac 
Time 6.64 0.01* 
Group 5.69 0.02* 

Calculated for α=0.05, degrees of freedom (Time) = 18, 
degrees of freedom (Group) =  3. Critical F-Value = 3.17. * 
denotes statistical significance of p<.05. 

Table 8: Summary Statistical Data for ABG Parameter Analysis. 
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3.4 Respiratory Rate Results 

 Respiratory rate (RR) for each subject was measured every 5 minutes starting at 

Time 0 by observing chest rise for 30 seconds and doubling the observed rate to obtain 

respiration rate per minute. Means and standard deviations were then calculated (Table 

11) and plotted against respective time points (Figure 14). Data were analyzed using 

StaPlus Pro® two-way ANOVA (Table 10). Significance was calculated using the Fisher 

Least Square Difference test and paired Student’s t-tests with p<.05 considered 

significant. 

 Neither sham-exposed groups demonstrated any significant changes in 

respiratory rate over time or between groups for the duration of the procedure. Both 

groups exposed to CO demonstrated a significant exponential-like decrease in RR 

during exposure compared to sham groups (p<.0001 at Time 30). This decrease in RR 

was associated with an observed increase in tidal volume (TV) and appearance of a 

Kussmaul-like respiration pattern. This could not be quantified, as TV was not 

measured. However, the increase in pO2 and decrease in pCO2 indicate an overall 

increase in minute volume (MV), which confirms that TV must have increased.  

 Cessation of CO exposure resulted in recovery to baseline RR and observed 

decrease in TV to baseline within 40 minutes in both CO-B12r and CO-Vehicle groups.  

The CO-B12r remained significantly lower than sham groups until Time 60; CO-Vehicle 

groups showed no significant difference from sham groups by Time 40. No significant 

difference in RR was noted between CO-B12r and CO-Vehicle groups after treatment, 

however the CO-Vehicle group did exhibit an insignificant change of approximately 2 
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resp/min compared to CO-B12r. There were no significant differences between the 4 

groups from Time 60 to procedural end. 

 
 

 
 

 
Time CO-B12r CO-

Vehicle 
Sham-
B12r 

Sham-
Vehicle 

0 57±3 57±2 58±4 57±3 
5 53±4 54±3 58±3 57±2 
10 49±5a 50±2a 60±4 57±3 
15 48±4b 48±3b 57±5 58±3 
20 46±4b 47±3b 58±5 56±3 
25 45±3c 45±3c 57±5 58±2 
30 45±3c 46±4c 59±5 57±4 
35 49±3b 50±4a 56±5 56±4 
40 50±4a 52±5 56±5 56±2 
45 52±3a 54±3 58±6 57±4 
50 53±2a 53±3a 58±5 57±3 
55 52±3a 54±4 56±3 56±2 
60 55±3 54±4 57±6 56±2 
65 55±3 54±3 60±5 56±3 
70 55±3 55±3 59±3 55±2 
75 55±3 56±3 56±4 56±4 
80 57±3 56±3 56±5 56±1 
85 55±2 56±2 57±4 57±3 
90 56±2 57±3 56±4 57±2 

Variable F-Value p 

Time 4.51 <.0001* 

Group 23.98 *<.0001 

Calculated for α=0.05, degrees of freedom (Time) = 18, degrees of 
freedom (Group) =  3. Critical F-Value = 3.17. Asterisk denotes 
statistical significance of p<.05. 

Rate decreased significantly in CO-exposed rats and returned to baseline 
within 40 minutes.a (p<.05), b (p<.01), c (p<.001), in comparison to sham 
groups. 
 

Table 9 – Mean Respiratory Rate and Standard Deviations of the Mean 

Table 10 – Summary Statistical Data for Respiratory Rate Analysis 
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Figure 14 – Mean Respiratory Rate and Standard Deviations of the Mean Over Time. Sham-
exposed groups did not demonstrate significant RR changes. CO exposure caused marked RR 
decreases in both CO-exposed groups.. There were no significant differences in the rates of RR 
recovery between the two CO-exposed groups. 
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DISCUSSION 

4.1 CO Poisoning, Perfusion, & Oxygenation 

The most significant and novel observation from this study was that exposure to 

CO caused marked decreases in PbtO2 that were rapidly rescued by B12r treatment 

(Figure 10, p<.0001). To the best of our knowledge, this is the first time that PbtO2 has 

ever been evaluated in the context of CO exposure. Implicit to the pathology of CO 

poisoning and the hypothesis of this study is the idea that PbtO2 values are indicative of 

cerebral cellular oxygenation. That is, low values indicate hypoxia and high values 

indicate adequate brain oxygenation. While the temptation exists to interpret the 

decrease in PbtO2 as evidence of CO-mediated hypoxia, much of the current literature 

argues against the hypoxic theory of CO poisoning.46,51,89,95,98 Extreme caution must 

therefore be taken in interpretation of these data. Given the complicated, poorly 

understood pathophysiology of CO poisoning and the limited number of physiological 

parameters measured, elucidating the exact physiological mechanisms responsible for 

all changes seen is not possible. The physiological basis of PbtO2, determinants of 

PbtO2 changes, and the correlation to other physiological parameters must be first 

considered in the context of published data on the complex pathophysiological 

mechanisms of CO poisoning.  

PbtO2 is a measurement of extracellular dissolved O2, and is believed to 

represent the balance between oxygen supply and metabolic needs, although the exact 

relation of PbtO2 to cerebral oxygen supply/demand and other physiological parameters 

is still under discussion in the literature.199,206 Determination of PbtO2 depends on the 

complex interactions of factors that determine O2 delivery such as CBF, MAP, O2 
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content of the blood, proper dissociation of O2 from Hb, ventilation, and the fraction of 

inhaled oxygen (FiO2) as well as cerebral metabolic demands.200,207 The amount of 

oxygen delivered to the brain can be derived from the Fick equation and is the product 

of CBF and arterial oxygen content (CaO2): 𝐷𝑂! = 𝐶𝐵𝐹×𝐶!𝑂!, where CaO2 is equal to: 

𝑐𝑡𝐻𝑏 !
!"

×1.36!"!!
!"#

×𝑆!𝑂!%+ 0.0032𝑘𝑃𝑎×𝑃𝑎𝑂! (SaO2% = %O2Hb, PaO2=arterial pO2). 

The formation of COHb and subsequent left-shift of the O2-Hb dissociation curve 

creates a functional anemia and significantly reduces CaO2, which is the foundation of 

the hypoxic theory of CO poisoning.41,46,62,76,89,150 A decrease in CaO2 should 

theoretically lead to a corresponding decrease in PbtO2, however the brain exhibits an 

exquisite ability to autoregulate CBF in order to meet metabolic demands.201,208,209 It has 

been established that CO poisoning causes an immediate NO-mediated compensatory 

CBF increase in both animals and humans that is capable of maintaining DO2 even as 

%COHb approaches 30-50% or higher, depending on the study.76,89,97,105-111 

Additionally, Rostenthal and colleagues examined PbtO2 changes in traumatic brain 

injury patients and reported that PbtO2 primarily reflects diffusion of dissolved oxygen, 

and is therefore not an ischemia monitor per se.150 However, Rosenthal’s study was 

performed on patients with normal O2Hb saturation and a similar analysis on CO-

poisoned blood has yet to be performed in humans, which could yield conflicting results 

as COHb formation drastically reduces CaO2. Based on this, we cannot conclude that 

the PbtO2 decrease was related to COHb formation alone despite %COHb in CO-B12r 

(58.4±5.6) and CO-Vehicle (60.1±3.6) groups being above 50%. Indeed, we can 

conclude that brain tissue oxygen tension is not directly related to %COHb per se.  
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The ability of the brain to autoregulate CBF is MAP-dependent. In humans and 

rodents, autoregulatory capacity is lost when MAP is <60mmHg, at which point CBF 

begins to vary linearly with MAP.207,209 In the rat, CBF decreases from 100mL/min/100g 

tissue to 60mL/min/100g tissue when MAP decreases from 90mmHg to 50mmHg.209,210 

In our study, CO-B12r and CO-Vehicle groups demonstrated significant decreases in 

MAP from 88.2±3.2 to 46.2±1.9mmHg and 89.3±3.5 to 45.4±Hg, respectively (p<.0001 

compared to controls). An examination of the correlation between mean PbtO2 and 

MAP in the CO-B12r and CO-Vehicle groups during exposure shows a tight nonlinear 

correlation. An sigmoidal relationship is seen between the two variables, and a linear 

trend between MAP and PbtO2 was noted with MAP <80mmHg, which could indicate 

that autoregulation of CBF was compromised during CO exposure when MAP dropped 

below 80mmHg and that subsequent PbtO2 changes were MAP-dependent. Although 

we did not measure CBF during this study and therefore cannot determine if 

autoregulation of CBF was indeed compromised, PbtO2 shares a sigmoidal relationship 

with regional CBF when normal autoregulatory mechanisms are present that becomes 

linear when compromised in traumatic brain injury studies (r=0.74, r=0.66).199,211   A 

recently published computational study modeled PbtO2 changes in relation to changes 

in MAP and SaO2 states that manipulation of a single physiological variable is often 

incapable of causing significant PbtO2 changes due to the ability of the brain to 

autoregulate, however ischemia is predicted when two or more physiological 

derangements are present.207 In our study, both MAP and SaO2 were markedly altered, 

and could therefore result in ischemia.  
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Figure 15: Correlation of PbtO2 and MAP During CO exposure. Sigmoidal correlation 
of mean PbtO2/MAP during 30-minute CO exposure. Data presented as as mean 
PbtO2/MAP for each group (trend lines) with paired individual subject observations. 
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A swine study by Hempfill et al. evaluating PbtO2 changes associated with 

varying hemodynamic parameters corroborates our hypothesis that the decrease in 

MAP is at least partly responsible for the noted PbtO2 in this study. They reported a 

strong sigmoidal correlation (r2=0.72) of PbtO2 with MAP when MAP is between 

60mmHg and 150mmHg (Figure 16). According to his data, MAP values of 50 

correlated to PbtO2 values between 10-20mmHg, which is concurrent with our PbtO2 

data set.212 Given the striking similarities in data and the linear variability of PbtO2 with 

MAP, it can be reasonably hypothesized that autoregulatory capacity was lost and that 

hypotension was the significant contributing factor to our data. 

Figure 16: Correlation of PbtO2 with MAP - Hemphill et al. Adapted from 
“Carbon Dioxide Reactivity and Pressure Autoregulation of Brain Tissue” by 
Hemphill et al. Neurosurgery (2001). 48(2):377-383. Copyright Wolters Kluwer. 
Used with permission.  
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However, hypotension was not the only pathological variable and our PbtO2 data 

demonstrated the greatest rate of decrease within the first 10 minutes of exposure when 

MAP appeared high enough to maintain autoregulation.  Interpretation of this variance 

from published data requires consideration of the relationship between PbtO2 to other 

physiological parameters. Multiple studies have demonstrated that PbtO2 correlates 

highly with SjvO2 values (r2=0.71,r2=0.69), which is a well-studied and understood 

indicator of cerebral oxygen delivery and consumption.199,213,214 Decreases in SjvO2 

correspond to an increase in oxygen uptake from capillaries, via an increase in cerebral 

metabolism or decrease in DO2, both of which result in a subsequent increase in OER, 

therefore causing decreased SjvO2.215–217 Multiple animal studies have reported 

decreased SjvO2 during CO poisoning, which was believed to be the result of a 

compensatory increase in OER.62,76,89 It is therefore possible that the initial rate of PbtO2 

decrease seen in our data could reflect an increase in OER as a compensatory 

mechanism to CO. Our PbtO2 data appear to decrease in an exponential fashion, and a 

simple exponential regression line gives r2=0.87 and r2=0.83 for CO-B12r and CO-

Vehicle groups respectively. This exponential rate of decay could indicate approaching 

a steady-state equilibrium between O2 delivery from poisoned blood and CMRO2. Even 

in the presence of a decrease in cerebral metabolism and increase in CBF, a 60% 

reduction in CaO2 (approximately 60% COHb) could still require a compensatory OER 

increase, which would be recorded as a decrease in PbtO2 as long as autoregulation is 

maintained. In order to confirm this, a detailed study on the cerebrovascular and PbtO2 

responses to CO poisoning would be required. 
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We must also take into account this study’s greatest limitation and confounding 

variable: anesthesia. This procedure required general anesthesia, however measures 

were taken to ensure that minimal anesthesia was used while maintaining experimental 

consistency. All rats received 2.0% isoflurane balanced in 2500ppm CO in medical air 

or medical air during exposure and monitoring. This is approximately equivalent to 1.3 

MAC.218 Although widely used in our laboratory and in myriad veterinary practices, 

isoflurane is not without adverse effects. Isoflurane is vasoactive, and dose-dependent 

decreases in MAP are well documented with its use.219,220 When given at 2.0 MAC it is 

known to cause autoregulation dysfunction.221,222 Hoffman et al. reported that isoflurane 

does not affect autoregulation at 1.0 MAC.222 Strebel et al. reported delayed 

autoregulatory function at 1.0 MAC and ablation of autoregulation at 1.5 MAC.221 A 

study on canine hemodynamics under anesthesia reported a 20% decrease in Q at 

1.1MAC (1.7%) and that this was dose dependent.223 Recent anesthesia studies on 

rabbits and rats have both demonstrated that 2% isoflurane can also cause loss of 

autoregulation and decreases in PbtO2.224,225 It was recognized in designing this 

experiment that using baseline anesthesia as a control to evaluate the additive effects 

of anesthesia and CO was an unavoidable necessity. We must then consider the 

potential additive effects of combining CO and isoflurane.  Very little literature exists on 

the interactions between the two; the only relevant publishing found during a literature 

search was a case study on a perioperative CO poisoning case that did not provide any 

hemodynamic parameters.226 Isoflurane is a substrate of sGC and can competitively 

inhibit CO at the active site, but the extent to which this happens is not known.  But 

despite the lack of literature on clinical interactions of CO and isoflurane, it can be 
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reasonably inferred that exposing an isoflurane-anesthetized animal with potentially 

unstable cerebral hemodynamics to 2500ppm CO could cause rapid decompensation 

and total loss of autoregulation that would be reflected by a drop in PbtO2. 

The possible impact of mitochondrial inhibition must also be considered. In vitro 

studies and in vivo studies on humans and rats have demonstrated significant 

reductions in CcO activity following acute CO poisoning.65,99,102,126 The ability of O2 to 

dissociate from hemoglobin and diffuse into tissue depends on the presence of an 

oxygen gradient between the capillary and surrounding tissue. The main driving force 

behind this gradient continuous reduction of O2 to create ATP by mitochondria during 

oxidative phosphorylation.200 If oxidative phosphorylation is uncoupled, the driving force 

for oxygen diffusion is reduced, resulting in an increase of PbtO2. This was recently 

demonstrated by Nielsen and colleagues using a swine model of cyanide poisoning, 

which is an inhibitor of oxidative phosphorylation.227  

Regardless of the mechanisms, our data do indicate signs of global ischemia 

without the presence of hypoxia in CO-exposed rats. Lactic acid levels were significantly 

elevated in both CO-exposed groups after exposure, although pH remained unchanged 

(p<.0001). Normal blood pH during and following CO poisoning is well documented.76,80 

All CO-exposed rats demonstrated a hyperventilation response during CO poisoning 

that was noted by a significantly decreased RR and observed increase in TV (p<.001). 

Arterial blood gas analysis confirms that although RR decreased, MV must have 

increased substantially as pO2 increased and pCO2 decreased significantly (p<.05, 

p<.01, respectively). Significant decreases in HCO3- were also seen (p<.001). 

Hyperventilation is a well known compensatory mechanism demonstrated during CO 
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poisoning.76,77,82 Increases in MV via an increase in TV are characteristic of a central 

chemoreceptor-mediated response to cerebral acidosis. Although arterial pH was 

adequately compensated for by the hyperventilatory response-induced decrease in 

pCO2 and HCO3-, CSF pH was not measured and can differ widely from blood pH.76  

4.2 Post-Exposure & Treatment 

 The most profound finding of this study is the significant rescuing effect of B12r 

on the noted decreases in PbtO2 (p<.0001 in comparison to CO-Vehicle rats). Previous 

in vitro studies by Roderique et al. and Somera et al. indicated that B12r was capable of 

reacting with Hb-bound CO and oxidizing it to CO2.191,193 Unfortunately, the analytical 

methods available to our laboratory could not accurately quantify COHb in the presence 

of B12r. The Radiometer® ABL 800 blood analyzer used for ABG analyses determines 

%COHb using spectrophotoscopic methods, and the absorbance spectrum of 

hydroxocobalamin interferes with this analysis, therefore post-treatment %COHb 

readings were not deemed to be accurate.203,204 However, the respiratory rate data does 

suggest that this mechanism might also be conserved in vivo.  

The CO-B12r group exhibited a significantly decreased respiratory rate and 

Kussmaul-like pattern of TV for 25 minutes after treatment in comparison to sham-

exposed groups, whereas the CO-Vehicle group was not statistically different from 

sham-exposed groups within 10 minutes of treatment, except for the noted difference at 

Time 50 (p<.05). If B12r is truly oxidizing CO to CO2, this retained respiratory pattern 

could be a compensatory mechanism to offgas the produced CO2. However, no related 

increase in pCO2 or other blood chemistry changes were noted in CO-B12r rats after 

treatment. The lack of significant differences in ABG parameters is clinically significant 
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as it highlights the safety of OHCbl and AA in high doses. It also indicates that B12r 

does not cause any substantial increases in pCO2 that could result in acidosis.  

 Both B12-r treated rats demonstrated significant MAP increases within 5-10 

minutes after treatment (p<.0001, CO-Vehicle; p<.05, CO-B12r). Hydroxocobalamin is a 

powerful scavenger of the vasodilatory NO molecule and NOS inhibitor.183,184 Removal 

of free NO from circulation and decreased NO production by NOS inhibition causes 

vasoconstriction, thus increasing blood pressure. This vasopressor response to OHCbl 

is well documented across species.185,187 While the NO-scavenging mechanisms of 

B12r explain the transient MAP increase after treatment, our data indicate that this is 

not the mechanism behind the PbtO2 rescue.   

Reanalysis of the correlation between PbtO2 and MAP post-treatment (Figure 

17) yield two distinct patterns of recovery between the CO-B12r and CO-Vehicle 

groups. Ratio plots of both CO-exposed groups show long linear tails that correlate with 

published findings that PbtO2 varies directly with CBF, and therefore MAP, when 

autoregulation is compromised.212 However, the opposing increases and decreases of 

the treatment group PbtO2/MAP ratios away from the original CO exposure trend line 

cannot be explained by blood pressure changes alone, given that PbtO2 varies in a  

sigmoidal fashion with MAP.  Post-treatment CO-B12r PbtO2/MAP is shifted left from 

the exposure trend line and demonstrates a clear sigmoidal pattern of PbtO2 recovery 

in relation to MAP when MAP>70mmHg. CO-Vehicle post-treatment data shifted 

horizontally to the right from the exposure trend line and also showed a sharp 

ΔPbtO2/ΔMAP increase with MAP >70mmHg.  Based on the ΔPbtO2/ΔMAP increase 

seen in both groups at MAP >70mmHg and published data on rat autoregulation, this 
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very likely indicates recovery of CBF autoregulation in both groups when MAP 

>70mmHg. Recovery of autoregulation would rapidly increase DO2 and therefore 

theoretically associate with marked increases in the PbtO2/MAP ratio as PbtO2 rises in 

relation to MAP before reaching a steady state plateau. Although CO-Vehicle group 

mean MAP at Time 50 was 76.2±6.2mmHg, a resurgent increase in PbtO2 back to 

baseline levels was not seen. This, along with the shifts of the post-treatment 

PbtO2/MAP ratios are evidence that there are latent determinants of PbtO2 that cannot 

be accounted for given the limited parameters measured during this study.  

  

Figure 17: Overlay of Pre- & Post-Treatment PbtO2/MAP. CO-B12r (red) shifted to 
the left of the previous sigmoidal relation. CO-Vehicle (blue) PbtO2/MAP recovery 
was marked by a right shift of PbtO2/MAP and increased ratio at MAP >80mmHg.  
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Addition of PbtO2/MAP ratios from sham groups to the PbtO2/MAP ratio plot 

yields a more complete understanding of the overall of the relation between these two 

variables (Figure 18).  

 

The junction of the Sham-B12r and CO-B12r PbtO2/MAP clearly, albeit somewhat 

unorthodoxly, shows the lower end of the sigmoidal PbtO2/MAP relationship.  Despite 

the presence of a MAP great enough to sustain normal autoregulation, PbtO2 remained 

decreased after CO exposure in CO-Vehicle rats.  

Our data can only account for changes in PbtO2 and MAP, and we cannot draw 

conclusions as to the states of other variables based on these. However, mechanistic 

inferences can be made based on basic physiological concepts. The decrease of the 

Figure 18: Mean PbtO2/MAP for all Groups and Times. The sigmoidal relationship 
between MAP and PbtO2 is clearly demonstrated by junction of the Sham-B12r and 
CO-B12r ratio. 
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CO-Vehicle PbtO2/MAP ratio may signify impaired cerebral oxygen delivery based on 

the simplified Fick principle 𝐷𝑂! = 𝐶𝐵𝐹×𝐶!𝑂!, where CBF is equal to the difference 

between MAP and intracranial pressure. If PbtO2 is an indicator of cerebral perfusion, 

then we can alter that equation to 𝑃𝑏𝑡𝑂!~𝑀𝐴𝑃×𝐶!𝑂! =
!"#!!
!"#

~𝐶!𝑂! and infer that the 

right shift and decrease in PbtO2/MAP ratio seen after CO exposure corresponds to 

decreased CaO2, possibly due to COHb hypoxia or continued cerebrovascular 

dysfunction. Decreases in CMRO2 have also been described in multiple CO studies, 

which could also correlate to a sustained decrease in PbtO2.97  

We could also boldly make the reverse assumption regarding the CO-B12r 

group. That is, a leftward shift of the PbtO2/MAP ratio could indicate increased CaO2. 

Assuming that the in vitro reactivity of B12r with COHb is conserved in vivo, we cannot 

rule out that B12r may have reacted with COHb without further animal studies. 

However, these inference are simple and do not take any other physiological 

parameters or the myriad pathological mechanisms of CO into account.  

4.3 Limitations & Sources of Error  

 The biggest confounding variable in this stud was the previously discussed and 

unavoidable anesthetic requirement and use of isoflurane. Given the current data on the 

cerebrovascular actions of 2% isoflurane and the compensatory CBF increase in CO 

poisoning that is capable of maintaining DO2, it is likely that the loss of autoregulated 

CBF indicated by was a product of the combined actions of the two gases and these 

data may prove difficult to replicate in awake subjects during future studies. The Licox® 

system itself is another possible source of human error. The sensitive tip on the CC1.R 

probe is 1mm long and is prone to fluctuations if moved a fraction of a millimeter after 
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equilibrating. Literature from Integra Neuroscience states that the Licox® system can 

deliver accurate readings within 2 minutes, however we opted for a 30-minute 

equilibration time to avoid artifact from any microtrauma caused during placement; it is 

possible that some of the PbtO2 data was influenced by catheter insertion-related 

microtrauma despite careful surgical technique. The arterial blood gas analysis data 

from this study show stable lactate and pO2 levels through the duration of the 

procedures and gives evidence of high quality surgical work. We were additionally 

limited in our inability to analyze blood for %COHb after B12r exposure.  

4.4 Future Directions 

 The results of this study desperately warrant repetition, as this is the first 

documented evaluation of PbtO2 in carbon monoxide poisoning and the first glimpse 

into the physiology of the potential antidote designed by Roderique et al.191 The effects 

of CO poisoning are myriad, complex, and still poorly understoo.11,46,48,62,89,97,99,101,125 

Future work with respect to this study should probe the interactions between PbtO2, 

cerebral hemodynamics, and cerebral blood flow that occur during acute CO exposure 

and following B12r administration using PbtO2 electrodes in combination with SjvO2 and 

arterial oximetry, An experimental design not confounded by anesthesia would be 

preferable, as isoflurane and other volatile inhaled anesthetics disrupt normal 

cerebrovascular coupling even at 1.0 MAC or below.220–222,225 It would also be poignant 

to determine how PbtO2 changes with varying concentrations and exposure times to 

CO. Given that there is no correlation between %COHb and prognosis, PbtO2 could 

become a potential prognostic indicator for severe CO poisoning or serve as the 
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foundation for a standard set of criteria to determine severity of CO exposure based on 

correlated changes in PbtO2.35,46,48,129,131  

One of the most pressing questions with respect to B12r is whether or not is truly 

is capable of reacting with COHb, which is deceivingly simple to answer as typical 

spectrophotometric analytical techniques are invalidated by the presence of 

OHCbl.203,204 Blood analysis via GC-MS is capable of analyzing %COHb in the 

presence of OHCbl.228–230 If given access to suitable equipment, analysis of %COHb 

changes with our without B12r treatment in a small animal model would be a simple to 

perform.  

4.5 Summary 
 Previous studies by Roderique et al. and Somera et al. have implicated a 

reduced form of hydroxocobalamin (B12r) as a potential therapy for acute CO 

poisoning. Based on their data, we aimed to characterize the acute effects of CO 

poisoning on brain tissue oxygen tension (PbtO2), mean arterial pressure (MAP), 

respiratory rate (RR), and arterial blood gas (ABG) chemistry. MAP was recorded 

continuously, PbtO2 and RR recorded every 5 minutes, and ABG samples taken at 

baseline, post-exposure, and at two time points 20 and 60 minutes after treatment. 

PbtO2 was monitored via an oxygen- sensitive Licox® Clark-type electrode placed into 

the primary somatosensory cortex of anesthetized rats using stereotaxic technique and 

exposed them to 2500ppm CO in medical air or medical air, both mixed with 2% 

isoflurane to maintain sedation. Additional parameters measured included MAP, 

respiratory rate, and serial blood gas analyses.  Mean PbtO2 decreased from 

31.3±1.2mmHg to 18.3±1.0mmHg in the CO-B12r group (n=10) and from 

31.2±0.7mmHg to 18.2±1.3mmHg in the CO-Vehicle group (n=10)(p<.0001). MAP 
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decreased significantly in both CO-exposed groups as well, from 88.2±3.2mmHg to 

46.2±1.9mmHg in CO-B12r and from 89.3±3.5mmHg to 45.4±2.0mmHg in CO-Vehicle 

(p<.0001). Exposure to CO was associated with a significant decrease in respiratory 

rate and observed increase in tidal volume. Significant compensated lactic acidosis was 

seen after CO exposure with mean lactate >3mM in both CO-exposed groups (p<.001). 

.Both sham-exposed groups (n=5) did not demonstrate any significant parameter 

differences with any of the groups at baseline or during sham exposure to medical air. 

 Following 30 minute exposure protocol, rats were administered a randomly 

assigned treatment of 100mg/kg B12r (50mg OHCbl + 50mg AA/mL) or equivalent 

volume of normal saline and monitored for 60 minutes. Rats were then humanely 

euthanized. 

 Administration of B12r to CO-poisoned rats had a profound rescuing effect on the 

decrease in PbtO2; mean CO-B12r was significantly higher than the CO-Vehicle group 

within 5 minutes (p<.01). A correlating and significant increase in MAP was seen as well 

(p<.05). CO-B12r RR remained significantly below CO-Vehicle RR for 15 minutes after 

treatment(p<.05). No significant differences were noted in ABG analysis between the 

two CO-exposed groups. Administration of B12r to sham-exposed rats caused a 

significant transient MAP increase as well. 

4.6 Conclusions 

 We were able to successfully demonstrate and reproduce decreased PbtO2 in 

the rat brain during exposure to CO. It is widely accepted that CO poisoning causes an 

immediate, NO-mediated increase in CBF, and that this is capable of maintaining DO2 

to the brain.89,95,98,104–107 Our PbtO2 data correlated highly to MAP in a sigmoidal 
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manner above 70mmHg and linearly below 70mmHg, which is consistent with the 

published relationship between PbtO2 and MAP.212 This relationship became linear 

when MAP dropped below 70mm, which is the approximate lower MAP limit of rat 

cerebral autoregulation, and is consistent with loss of cerebrovascular coupling.209,212 

Our findings suggest that the decrease in PbtO2 seen during CO poisoning was 

mediated by loss of cerebral vasomotor tone and autoregulation. Isoflurane may have 

played a role in destabilizing CBF that was exacerbated by the NO/cGMP-mediated 

vasodilation of CO and resulted in vascular collapse.221,222,225 However, the complex 

pathology of CO must also be considered, making it difficult to draw conclusions based 

on this one study. Our data warrant repetition in a more hemodynamically stable animal 

model. 

 Recovery of PbtO2 showed two very unique trends between CO-B12r and CO-

Vehicle groups characterized by rapid PbtO2 recovery and respective increases and 

decreases of the PbtO2/MAP ratio. We believe that the NO-scavenging and inhibitory 

effects on NOS by B12r are partially responsible for this effect. However, blood 

pressure alone cannot explain the difference in PbtO2 recovery trends as the CO-

Vehicle MAP means were high enough to sustain autoregulation. It is possible that the 

difference in PbtO2/MAP ratio seen in the CO-Vehicle group was indicative of continued 

vascular dysfunction and/or COHb hypoxia. Although bold, we also postulate that the 

PbtO2/MAP increase associated with B12r administration could be the result of an 

increased arterial oxygen capacity as a result of B12r treatment and reaction with 

COHb. The only concrete conclusions that this author feels comfortable drawing are 
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that this study absolutely warrants further related work, and that like with any exciting 

study we are left with more questions than answers. 
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